Артикул: 1086903

Раздел:Технические дисциплины (60701 шт.) >
  Математика (23848 шт.) >
  Математический анализ (16533 шт.) >
  Функции нескольких переменных (84 шт.)

Название или условие:
Найти полную производную функции u = x + y2 + z3, где y = sin(x), z = cos(x)

Изображение предварительного просмотра:

Найти полную производную функции u = x + y<sup>2</sup> + z<sup>3</sup>, где y = sin(x), z = cos(x)

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти величину и направление наибольшего изменения функции u(M)=u(x, y, z) в точке M0(x0, y0, z0)
u(M) = x2y + z, M0(1, −2, 3)

Найти экстремум функции u=x3+12xy+y2+z2+2z
Найти gradu(M) и |gradu(M)| в точке М(1;1;0) для функции u = √(xy) - √(4 - z2)
Даны функция z = f(x,y), точка A(x0, y0) и вектор a(a1, a2) . Найти: 1) fradz в точке A; 2) производную в точке A по направлению вектора a
z = 5x2 + 6xy, A(2,1), a = i + 2i

Для функции z=ln⁡(x2+5y2) в точке A(-5;1) найти градиент и производную по направлению a =i - (5j)
Найти градиент функции u = x + ln(z2 + y2) в точке M(2,1,1)
Найти величину и направление наибольшего изменения функции u(M) = u(x,y,z) в точке M0(x0,y0,z0)
u(M) = xy2z2, M0 (-2,1,1)

Найти параметры a, b, c ∈ R при которых функция f(x, y)=x3+3xy2+ax+by+c, имеет локальный максимум, равный 28 в (-2, -1).
Найти градиент функции (рис) точке M0(1,1,1) и его модуль.
Задание 2. Найти наибольшее и наименьшее значения для каждой из заданных функций в указанной замкнутой области D.
Вариант 4
z=3x2-x+3y2-y+1