Артикул: 1088192

Раздел:Технические дисциплины (69978 шт.) >
  Теоретическая механика (теормех, термех) (1787 шт.) >
  Кинематика (525 шт.) >
  Уравнение движения точки (210 шт.)

Название или условие:
Материальная точка М движется в плоскости, на которой введена прямоугольная декартова система координат Оху. Движение точки задано координатным способом:
х =x (t)=k_1*cos⁡(2*k*t^2 )+k_2=- 2*cos⁡(2*0,9*t^2 )+3,
у = y(t)= k_3*cos⁡(k*t^2 )+k_4=- cos⁡(2*0,9*t^2 )+1.
Координаты точкиx, y измеряются в метрах, а аргумент t – в секундах.
Определить в заданный момент времени t=1,2 с все кинематические характеристики движущейся точки: уравнение траектории; координаты, проекции и величину скорости VX, VY и V, проекции и величину полного ускорение aX, aY и a, а также ее касательное aτ и нормальное an ускорения, радиус кривизны и закон движения точки по траектории s=s(t). Изобразить на рисунке полученные результаты.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Материальная точка М  движется в плоскости, на которой введена прямоугольная декартова система координат Оху. Движение точки задано координатным способом: <br />х =x (t)=k_1*cos⁡(2*k*t^2 )+k_2=- 2*cos⁡(2*0,9*t^2 )+3, <br />у = y(t)= k_3*cos⁡(k*t^2 )+k_4=-  cos⁡(2*0,9*t^2 )+1. <br />Координаты точкиx, y  измеряются в метрах, а аргумент  t  – в секундах. <br /> Определить в заданный момент времени t=1,2 с  все кинематические характеристики движущейся точки: уравнение траектории; координаты, проекции и величину скорости  V<sub>X</sub>, V<sub>Y</sub>  и V, проекции и величину полного ускорение a<sub>X</sub>, a<sub>Y</sub>  и  a, а также ее касательное a<sub>τ</sub> и нормальное a<sub>n</sub> ускорения, радиус кривизны и закон движения точки по траектории s=s(t).  Изобразить на рисунке полученные результаты.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача К1. Определение кинематических характеристик движения материальной точки
Задание 1.2

По заданным уравнениям движения сделать анализ этого движения:
1. Найти уравнение траектории точки в координатной форме и построить ее.
2. Указать положение точки при t=0 и в заданный момент времени t1=1(с)
3. Найти и построить скорость, тангенциальное, нормальное и полное ускорения при t1=1(с), а также найти радиус кривизны ее траектории
Вариант 25

Задача К1
Известен закон движения точки M в плоскости Oxy: x = 4 − 2t, y = 3 − 4 cos(πt/4).
Требуется найти вид ее траектории. Для заданного момента времени t1 = 1 с определить:
- положение точки M на траектории;
- скорость и ускорение точки M;
- ее касательное и нормальное ускорения;
- радиус кривизны в соответствующей точке траектории.

Определение скорости и ускорения точки по заданным уравнениям движения
В соответствии с заданными уравнениями движения определить траекторию движения точки. Для заданного момента времени найти положение точки на траектории, её скорость и ускорение, касательное и нормальное ускорения, а также радиус кривизны траектории в соответствующей точке. Сделать чертеж.

Задача К1 . Определение скорости и ускорения точки по заданным уравнениям её движения.
По заданным уравнениям движения точки установить вид её траектории и для момента времени t=t1 (с) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.
Необходимые для решения данные приведены в таблице 16.
Вариант 0

Задача К1
По заданным уравнениям движения точки М х = x(t) и у = y(t) установить и построить вид её траектории. Для момента времени t = 1 с найти и построить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице.
Рисунок 6 условие 9

Материальная точка движется по окружности, радиуса R; закон движения точки s(t). Определить способ задания движения точки, скорость точки в момент врмени t1 и касательное, нормальное и полное ускорения в момент времени t2.
Исходные данные: R = 20 см; s(t)=12+5t+2t2, см; t1 = 0 с; t2 = 1 с.
Кинематика точки
Уравнения движения точки имеют вид x=xk(t), y=yk(t), где индекс k – номер варианта. В момент времени t найти векторы скорости V, ускорения W, касательную (тангенциальную) Wτ и нормальную Wn составляющие ускорения, радиус кривизны траектории ρ.
Вариант 4

Найти скорость, ускорение и радиус кривизны точки в заданный момент времени.
x=2t+1,y=-4t2,t=1 c

Задание К.1. Определение скорости и ускорения точки по заданным уравнениям ее движения.
По заданным уравнениям движения точки М установить вид её траектории и для момента времени t = t1 (c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории. Необходимые для решения данные приведены в таблице.
Вариант 3

Задание 1.1
По заданным уравнениям x=x(t), y=y(t) движения точки сделать анализ этого движения:
1. Найти уравнение траектории точки в координатной форме и построить её.
2. Указать положение точки при t=0 и в заданный момент времени t=t1;
3. Найти и построить скорость, тангенциальное, нормальное и полное ускорение точки при t=t1, а также найти радиус кривизны её траектории
Вариант 25