Артикул: 1027633

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Сложное движение точки (58 шт.)

Название или условие:
На проволочной окружности радиусом r надето колечко М, через него проходит стержень ОА, который поворачивается вокруг точки О с постоянной угловой скоростью. Определить уравнения движения и уравнение траектории колечка М, если бы в начальный момент стержень ОА был вертикален.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

На проволочной окружности радиусом r надето колечко М, через него проходит стержень ОА, который поворачивается вокруг точки О с постоянной угловой скоростью. Определить уравнения движения и уравнение траектории колечка М, если бы в начальный момент стержень ОА был вертикален.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Сложное движение точки, пространственная траектория
Геометрическая фигура вращается вокруг оси, лежащей в ее плоскости. По каналу, расположенному на фигуре, движется точка M по известному закону AM(t) или BM(t) (в см). Найти абсолютную скорость и абсолютное ускорение точки при t = t1. Даны закон вращения фигуры ϕe(t) (или постоянная угловая скорость ωe), время t1 и размеры фигуры. Углы даны в рад, размеры — в см. Длина BM или AM — длина отрезка прямой или дуги окружности, AB — длина отрезка прямой.
Вариант 8

Задача К.3.
Сложное движение точки

Для приведенных схем определить значения абсолютной скорости и абсолютного ускорения в момент времени t1.
Вариант 17

Задача К3. Прямоугольная пластина вращается вокруг неподвижной оси с постоянной угловой скоростью ω. Ось вращения перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости).
По пластине вдоль прямой BD движется точка М. Закон ее относительного движения s=AM=f(t) (s – в см , t – в сек) задан в таблице. Точка М показана в положении, при котором s=AM> (при s<0 точка М находится по другую сторону от точки А).
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

Задача 3
Найти в указанный момент времени абсолютные скорость и ускорение

Задача 2
Найти в указанный момент времени абсолютные скорость и ускорение

Задача 8
Найти в указанный момент времени абсолютные скорость и ускорение

Задание №6. Определите абсолютную скорость и абсолютное ускорение точки.
1. Определяем положение механической системы
2. Показываем положение механической системы
33. Определяем переносную скорость точки
4. Определяем относительную скорость точки
5. Показываем векторы скоростей
6. Определяем абсолютную скорость точки.
7. Определяем переносное ускорение точки.
8 Определяем относительное ускорение точки
9 Определяем кориолисово ускорение точки.
10. Показываем векторы ускорений
11. Определяем абсолютное ускорение точки.
|AB| = 3,5 м; |AM| = 2,27 м; VM = 0,69 м/с; aM = 0,27 м/с2; ωAB = 0,039 с-1; MPAB = 17,87 м; aMX = -0,14 м/с2; β = 11°

Задача 3.12.3
Определить скорость и ускорение точки в заданный момент времени

Задача 23.31.
Шайба М движется по горизонтальному стержню ОА, так что ОМ=0,5t2 см. В то же время стержень вращается вокруг вертикальной оси, проходящей через точку О, по закону φ=t2+t. Определить радиальную и трансверсальную составляющие абсолютной скорости и абсолютного ускорения шайбы в момент t= 2 сек.

По ободу диска радиуса r движется точка M. Уравнение движения задано в таблице; там же указано начало М0 и направление отсчёта дуговой координаты s. Положительное направление отсчёта – по ходу часовой стрелки, если смотреть навстречу оси z. Уравнение вращения диска задано в таблице. Положительным направлением вращения считается направление против хода часовой стрелки, если смотреть с положительного конца О1 оси ОО1. Для момента времени t1 =1 с определить абсолютную скорость и абсолютное ускорение точки M .
Вариант 422