Артикул: 1140582

Раздел:Технические дисциплины (86700 шт.) >
  Математика (32361 шт.) >
  Математические методы (29 шт.)

Название или условие:
При изучении влияния факторов алюминотермического способа восстановления Ме из фторида в качестве параметров оптимизации взято: Y1 - степень восстановления Ме, %; Y2 - размер частиц, образующегося порошка Ме, мкм. Необходимо, чтобы высокая степень восстановления Ме сочеталась с крупностью зерен от 10 до 60 мкм.
Требуется:
1) построить график функции Харрингтона;
2) построить оси натуральных значений обобщаемых параметров;
3) поставить числовые значения границ;
4) разбить отрезки в масштабе;
5) определить значения обобщаемых параметров;
6) обработать полученные результаты.

Описание:
Подробное решение в WORD - 5 страниц

Изображение предварительного просмотра:

При изучении влияния факторов алюминотермического способа восстановления Ме из фторида в качестве параметров оптимизации взято: Y1 - степень восстановления Ме, %; Y2 - размер частиц, образующегося порошка Ме, мкм. Необходимо, чтобы высокая степень восстановления Ме сочеталась с крупностью зерен от 10 до 60 мкм.<br />Требуется: <br />1)	построить график функции Харрингтона;  <br />2)	 построить оси натуральных значений обобщаемых параметров;  <br />3)	поставить числовые значения границ;  <br />4)	разбить отрезки в масштабе;  <br />5) определить значения обобщаемых параметров;  <br />6) обработать полученные результаты.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Необходимые и достаточные условия условного экстремума
Проверить, является ли точка x *= (0,2)T решением задачи f(x) = x12+(x2-2)2→min
x12 + x1x2 + x22 ≤ 16
x12 - x1x2 + x22 ≤ 16

Квадратичное программирование (реферат)
Необходимые и достаточные условия условного экстремума
Найти условный экстремум в задаче:
f(x)=(x1+2)2 +(x2–2)2→extr,
g1(x) = x12 + x22 –1≤ 0,
g2(x) = –x1 ≤ 0,
g3(x) = –x22 ≤ 0.

Как осуществляется проверка адекватности уравнения регрессии? (Ответ на теоретический вопрос - 1 страница)
Методы последовательной безусловной минимизации
Методом штрафов решить задачу
f(x) = (x1 +4)2 + (x2 - 4)2 → min
2x1 - x2 ≤ 2
x1 ≥ 0
x2 ≥ 0

Необходимые и достаточные условия условного экстремума
Найти условный экстремум в задаче: f(x) = (x1+2)2 +(x2–2)2→ extr, g1(x) = x12 + x22 –1 ≤ 0, g2(x)= –x1 ≤ 0, g3(x)= –x22 ≤ 0.

В чём заключается метод крутого восхождения? Как определить экстремум по методу крутого восхождения? (Ответ на теоретический вопрос - 1 страница)Необходимые и достаточные условия условного экстремума
Решить задачу
f(x) = -4x12 - 4x1 - x22 + 8x2 - 5 → extr
g1(x) = 2x1 - x2 - 6 = 0

Методы решения задач линейного программирования
Геометрически и симплекс-методом решить задачу:
f(x)= - 3x1 + 2x2 →max- целевая функция
-2x1+3x2 ≥ 6
x1+4x2 ≤ 16
x1,x2 ≥ 0;

Методы второго порядка
Решить задачу
f(x) = 4(x1 - 5)2 + (x2-6)2 → min методом Ньютона-Рафсона из точки x0 = (8,9)Т, μ0 = 20, ε1 = ε2 = 0,1 .