Артикул: 1042748

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математические методы (26 шт.)

Название или условие:
Численные методы поиска безусловного экстремума. Методы первого порядка
Методом наискорейшего градиентного спуска решить задачу:
f(x) = (x2 – x12)2 +(1–x1)2→min, x0 = (0;0)T.

Описание:
Подробное решение в WORD - 3 страницы

Изображение предварительного просмотра:

Численные методы поиска безусловного экстремума. Методы первого порядка <br /> Методом наискорейшего градиентного спуска решить задачу: <br /> f(x) = (x<sub>2</sub> – x<sub>1</sub><sup>2</sup>)<sup>2</sup> +(1–x<sub>1</sub>)<sup>2</sup>→min, x<sup>0</sup> = (0;0)<sup>T</sup>.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Изучить влияние факторов натриетермического способа восстановления РЗМ методом ПФЭ. В качестве параметра оптимизации (Y) взять степень восстановления РЗМ ( %). В качестве факторов взято:
Х1-температура процесса восстановления, °С;
Х2-количество восстановителя, % от ТНК;
Х3-продолжительность процесса восстановления, мин.;
Значение основного уровня и интервалов варьирования соответственно для:
Х1- 950 °С и 50 °С;
Х2- 112,5 % и 12,5 %;
Х3- 180 мин. и 60 мин.
Требуется:
1) составить план эксперимента в формальном виде;
2) рассчитать натуральные условия опытов;
3) определить порядок выполнения опытов;
4) рассчитать коэффициенты уравнения, если выполнив опыты получили следующие значения степени восстановления (см. таблицу):
1) рассчитать доверительный интервал для коэффициентов, если степень восстановления в параллельных опытах равна (%): 89,5; 91,0; 89,0; α =0,05;
2) определить расчётное значение критерия Фишера и проверить адекватность уравнения.

Выбрать основные факторы натриетермического способа восстановления РЗМ. В качестве факторов приняты следующие, как дано в таблице 1. Обработать полученные результаты:
1) определить согласованность мнений специалистов;
2) выбрать основные факторы
В качестве источников информации взято мнение 5 специалистов. Результаты опроса приведены в таблице 2.

Методы решения задач линейного целочисленного программирования
Найти целочисленное решение методом Гомори:
f(x) = -x1 - x2 → max
x1 - 2·x2 ≤ 0
x1 - x2 ≥ -1
x1 ≥ 0,75
x1,x2 ≥ 0, целые.

Как производится выбор границ областей желательности? Как выбрать числовые значения границ желательности? (Ответ на теоретический вопрос - 2 страницы)
Методы первого порядка
Методом наискорейшего градиентного спуска и методом покоординатного спуска из начальной точки x0 = (0,1;0,5)T
f(x) = -x12 + exp[1-x12-20,25∙(x1-x2)2 ]→min

Как осуществляется проверка адекватности уравнения регрессии? (Ответ на теоретический вопрос - 1 страница)
Как производится распределение факторов по степени их влияния на объект исследования? (Ответ на теоретический вопрос - 1 страница)Необходимые и достаточные условия условного экстремума
Найти условный экстремум в задаче:
f(x)=(x1+2)2 +(x2–2)2→extr,
g1(x) = x12 + x22 –1≤ 0,
g2(x) = –x1 ≤ 0,
g3(x) = –x22 ≤ 0.

Методы последовательной безусловной минимизации
Методом штрафов решить задачу
f(x) = (x1 + 4)2 + (x2 - 4)2 → extr
2x1 - x2 ≤ 2
x1 ≥ 0
x2 ≥ 0

Какова суть метода полного факторного эксперимента (ПФЭ)? (Ответ на теоретический вопрос - 1 страница)