Артикул: 1042746

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математические методы (26 шт.)

Название или условие:
Методы решения задач линейного целочисленного программирования
Найти целочисленное решение методом Гомори:
f(x) = -x1 - x2 → max
x1 - 2·x2 ≤ 0
x1 - x2 ≥ -1
x1 ≥ 0,75
x1,x2 ≥ 0, целые.

Описание:
Подробное решение в WORD - 12 страниц

Изображение предварительного просмотра:

Методы решения задач линейного целочисленного программирования <br />  Найти целочисленное решение методом Гомори: <br />  f(x) = -x<sub>1</sub> - x<sub>2</sub> → max<br /> x<sub>1</sub> - 2·x<sub>2</sub> ≤ 0<br /> x<sub>1</sub> - x<sub>2</sub> ≥ -1 <br /> x<sub>1</sub> ≥ 0,75 <br /> x<sub>1</sub>,x<sub>2</sub> ≥ 0, целые.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Как производится распределение факторов по степени их влияния на объект исследования? (Ответ на теоретический вопрос - 1 страница)Изучить влияние факторов натриетермического способа восстановления РЗМ методом ПФЭ. В качестве параметра оптимизации (Y) взять степень восстановления РЗМ ( %). В качестве факторов взято:
Х1-температура процесса восстановления, °С;
Х2-количество восстановителя, % от ТНК;
Х3-продолжительность процесса восстановления, мин.;
Значение основного уровня и интервалов варьирования соответственно для:
Х1- 950 °С и 50 °С;
Х2- 112,5 % и 12,5 %;
Х3- 180 мин. и 60 мин.
Требуется:
1) составить план эксперимента в формальном виде;
2) рассчитать натуральные условия опытов;
3) определить порядок выполнения опытов;
4) рассчитать коэффициенты уравнения, если выполнив опыты получили следующие значения степени восстановления (см. таблицу):
1) рассчитать доверительный интервал для коэффициентов, если степень восстановления в параллельных опытах равна (%): 89,5; 91,0; 89,0; α =0,05;
2) определить расчётное значение критерия Фишера и проверить адекватность уравнения.

Необходимые и достаточные условия условного экстремума
Решить задачу
f(x) = -4x12 - 4x1 - x22 + 8x2 - 5 → extr
g1(x) = 2x1 - x2 - 6 = 0

Методы решения задач линейного целочисленного программирования
Найти целочисленное решение методом ветвей и границ
f(x) = 2x1-x2→max
x1-2x2 ≤ 0
x1 - x2 ≥ -1
x1 + x2 ≤ 3,2
x1,x2 ≥ 0

Численные методы поиска безусловного экстремума. Методы первого порядка
Методом наискорейшего градиентного спуска решить задачу:
f(x) = (x2 – x12)2 +(1–x1)2→min, x0 = (0;0)T.

Исследование модели системы обработки непрерывно-дискретного потока входных данных (на примере варианта №1)
(Курсовая работа)
Методы первого порядка
Методами наискорейшего градиентного спуска и покоординатного спуска из начальных точек x0 = (0,3)Т и x0 = (3,0)Т решить задачу:
f(x) = (x22 + x12 -1)2 + (x1 + x2 -1)2 → min

Найти минимум функции f(x) = x13 + x1x2 - x22x12 → min методом Ньютона в точке x0 = (1,1)Т.
Методы второго порядка
Решить задачу методом Марквардта из точки x0 = (0;0)T, μ0 = 120, ε1 = ε2 = 0,1
f(x) = (x12+x2-11)2 + (x1+x22-7)2→min

Методы решения задач линейного программирования
Геометрически и симплекс-методом решить задачу:
f(x)= - 3x1 + 2x2 →max- целевая функция
-2x1+3x2 ≥ 6
x1+4x2 ≤ 16
x1,x2 ≥ 0;