Артикул: 1042771

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математические методы (26 шт.)

Название или условие:
Методы последовательной безусловной минимизации
Методом штрафов решить задачу
f(x) = (x1 +4)2 + (x2 - 4)2 → min
2x1 - x2 ≤ 2
x1 ≥ 0
x2 ≥ 0

Описание:
Подробное решение в WORD - 5 страниц

Изображение предварительного просмотра:

Методы последовательной безусловной минимизации <br /> Методом штрафов решить задачу <br />  f(x) = (x<sub>1</sub> +4)<sup>2</sup> + (x<sub>2</sub> - 4)<sup>2</sup> → min <br /> 2x<sub>1</sub> - x<sub>2</sub> ≤ 2 <br /> x<sub>1</sub> ≥ 0 <br /> x<sub>2</sub> ≥ 0

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Методы решения задач линейного программирования
Геометрически и симплекс-методом решить задачу:
f(x)= - 3x1 + 2x2 →max- целевая функция
-2x1+3x2 ≥ 6
x1+4x2 ≤ 16
x1,x2 ≥ 0;

Методы первого порядка
Методами наискорейшего градиентного спуска и покоординатного спуска из начальных точек x0 = (0,3)Т и x0 = (3,0)Т решить задачу:
f(x) = (x22 + x12 -1)2 + (x1 + x2 -1)2 → min

Необходимые и достаточные условия условного экстремума
Проверить, является ли точка x *= (0,2)T решением задачи f(x) = x12+(x2-2)2→min
x12 + x1x2 + x22 ≤ 16
x12 - x1x2 + x22 ≤ 16

Как происходит выбор основного уровня и интервалов варьирования? (Ответ на теоретический вопрос - 1 страница)
Необходимые и достаточные условия условного экстремума
Найти условный экстремум в задаче:
f(x)=(x1+2)2 +(x2–2)2→extr,
g1(x) = x12 + x22 –1≤ 0,
g2(x) = –x1 ≤ 0,
g3(x) = –x22 ≤ 0.

Найти минимум функции f(x) = x13 + x1x2 - x22x12 → min методом Ньютона в точке x0 = (1,1)Т.
Необходимые и достаточные условия условного экстремума
Решить задачу:
f(x) = x12 + (x2 - 4)2 → min
x12 + x22 ≤ 4, 4x12 + x22 ≥ 4

Изучить влияние факторов натриетермического способа восстановления РЗМ методом ПФЭ. В качестве параметра оптимизации (Y) взять степень восстановления РЗМ ( %). В качестве факторов взято:
Х1-температура процесса восстановления, °С;
Х2-количество восстановителя, % от ТНК;
Х3-продолжительность процесса восстановления, мин.;
Значение основного уровня и интервалов варьирования соответственно для:
Х1- 950 °С и 50 °С;
Х2- 112,5 % и 12,5 %;
Х3- 180 мин. и 60 мин.
Требуется:
1) составить план эксперимента в формальном виде;
2) рассчитать натуральные условия опытов;
3) определить порядок выполнения опытов;
4) рассчитать коэффициенты уравнения, если выполнив опыты получили следующие значения степени восстановления (см. таблицу):
1) рассчитать доверительный интервал для коэффициентов, если степень восстановления в параллельных опытах равна (%): 89,5; 91,0; 89,0; α =0,05;
2) определить расчётное значение критерия Фишера и проверить адекватность уравнения.

Какова суть метода полного факторного эксперимента (ПФЭ)? (Ответ на теоретический вопрос - 1 страница)При изучении влияния факторов алюминотермического способа восстановления Ме из фторида в качестве параметров оптимизации взято: Y1 - степень восстановления Ме, %; Y2 - размер частиц, образующегося порошка Ме, мкм. Необходимо, чтобы высокая степень восстановления Ме сочеталась с крупностью зерен от 10 до 60 мкм.
Требуется:
1) построить график функции Харрингтона;
2) построить оси натуральных значений обобщаемых параметров;
3) поставить числовые значения границ;
4) разбить отрезки в масштабе;
5) определить значения обобщаемых параметров;
6) обработать полученные результаты.