Артикул: 1139824

Раздел:Технические дисциплины (86079 шт.) >
  Математика (32343 шт.) >
  Аналитическая геометрия (2164 шт.)

Название или условие:
На клетчатой бумаге с клетками размером 1 см х 1 см изображена трапеция. Найдите ее площадь в квадратных сантиметрах

Изображение предварительного просмотра:

На клетчатой бумаге с клетками размером 1 см х 1 см изображена трапеция. Найдите ее площадь в квадратных сантиметрах

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти значение ctg75°Для данной поверхности найти уравнение касательной плоскости и нормали в указанной точке:
4+√(x2+y2+z2 )=x+y+x, M(2,3,6)

a1 = 3, a2 = 4, (a1,a2) = 2π/3. Вычислить (a1 + a2)2
При каком значении λ векторы a,b,c будут компланарны: a(1;2λ;1),b(1;λ;0),c(0;λ;1)
Вычислить площадь треугольника с вершинами A(1;1;1), B(2;3;4), C(4;3;2). Найдем площадь треугольника, как половину длины векторного произведения векторов AB, ACПараллелограмм OBCA построен на векторах OA = i - j + 2k,OB = 2i -6 j + 4k .Точка M – середина стороны AC. Найти угол между OM и диагональю OC.
Даны координаты точек А, В, С: А(1; 1; 3), B (–4; 0; 3), C (–1; 5; 7).
Требуется:
1) записать векторы AB и AC в системе орт и найти модули этих векторов;
2) найти угол между векторами AB и AC;
3) составить уравнение плоскости, проходящее через точку С перпендикулярно вектору AB.
Убедиться, что векторы a = 4i + 3 j,b = 5k могут быть взяты за ребра куба. Найти третье ребро c .
Определить координаты точки M, если ее радиус-вектор составляет с координатными осями одинаковые углы и его модуль равен 3.Напишите уравнение плоскости, проходящей через точку М (2;2;-2) и параллельной прямой х-2у-3z=0.