Параллелограмм OBCA построен на векторах OA = i - j + 2k,OB = 2i -6 j + 4k .Точка M – середина стороны AC. Найти угол между OM и диагональю OC. | Упростить выражение
 |
Даны вершины треугольника АВС A(-8; -4), B(4;5), C(2;-9) . Найти: 1) длину стороны АВ; 2) уравнения сторон АВ и АС и их угловые коэффициенты; 3) внутренний угол А в радианах с точностью до 0,01; 4) уравнение высоты CD и ее длину; 5) уравнение окружности, для которой высота CD есть диаметр; 6) систему линейных неравенств, определяющих треугольник ΔABC. | Вычислить площадь треугольника с вершинами A(1;1;1), B(2;3;4), C(4;3;2). Найдем площадь треугольника, как половину длины векторного произведения векторов AB, AC |
При каком значении x четырехугольник с вершинами A(3;-1;2), B(1;x;-1), C(-1;1;-3), D(3;-5;3) является трапецией? | Напишите уравнение плоскости, проходящей через точку М (2;2;-2) и параллельной прямой х-2у-3z=0. |
Даны три вектора a(1;-1;1),b(5;1;1),c(0;3;-2) . Вычислить b(a;c) -c(a;b) . | 6) Напишите уравнение плоскости, параллельной Ох и проходящей через точки М (2;2;0) и N (4;0;0). |
Найти значение ctg2α, если известно, что sinα = 1/4, α лежит в первой четверти. | Найти вектор x , удовлетворяющий условиям
 |