Артикул: 1163605

Раздел:Технические дисциплины (107107 шт.) >
  Математика (32806 шт.) >
  Аналитическая геометрия (2168 шт.)

Название или условие:
Даются координаты вершин некоторого треугольника ABC. Требуется:
1) вычислить длину стороны AB;
2) составить уравнение линии AB;
3) составить уравнение высоты, проведенной из вершины C;
4) вычислить расстояние от вершины B до стороны AC;
5) вычислить угол A(в радианах с точностью до двух знаков);
Вариант 7

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Даются координаты вершин некоторого треугольника ABC. Требуется:<br />1) вычислить длину стороны AB;<br />2) составить уравнение линии AB;<br />3) составить уравнение высоты, проведенной из вершины C;<br />4) вычислить расстояние от вершины B до стороны AC;<br />5) вычислить угол A(в радианах с точностью до двух знаков);<br /><b>Вариант 7</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Даны вершины треугольника АВС A(-8; -4), B(4;5), C(2;-9) .
Найти:
1) длину стороны АВ;
2) уравнения сторон АВ и АС и их угловые коэффициенты;
3) внутренний угол А в радианах с точностью до 0,01;
4) уравнение высоты CD и ее длину;
5) уравнение окружности, для которой высота CD есть диаметр;
6) систему линейных неравенств, определяющих треугольник ΔABC.
Показать, что четырехугольник ABCD – ромб, если A(1;2;2), B(3;5;8), C(-3;2;6), D(-5;-1;0). Найти угол при вершине ромба.
Напишите уравнение плоскости, проходящей через точку М (2;2;-2) и параллельной прямой х-2у-3z=0.Даны координаты точек А, В, С: А(1; 1; 3), B (–4; 0; 3), C (–1; 5; 7).
Требуется:
1) записать векторы AB и AC в системе орт и найти модули этих векторов;
2) найти угол между векторами AB и AC;
3) составить уравнение плоскости, проходящее через точку С перпендикулярно вектору AB.
Объем конуса равен 28. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.В треугольнике KLM угол M - прямой, KL = 29, LM = 21. Найдите tg∠K
Определить координаты точки M, если ее радиус-вектор составляет с координатными осями одинаковые углы и его модуль равен 3.Дано: AB=DC=|b|=1, BC=|a|=4, ABC=120°
Найти AC-? BD-?

Дан параллелепипед ABCDA1B1C1D1. Принимая за начало координат вершину A, а за базисные векторы AB, AD, AA , найти координаты:
а) вершин C, B1, C1;
б) точек K и L – середин ребер A1B1 и CC1 соответственно

Убедиться, что векторы a = 4i + 3 j,b = 5k могут быть взяты за ребра куба. Найти третье ребро c .