Артикул: 1137722

Раздел:Технические дисциплины (84712 шт.) >
  Математика (32260 шт.) >
  Аналитическая геометрия (2144 шт.)

Название или условие:
Даны координаты точек А, В, С: А(1; 1; 3), B (–4; 0; 3), C (–1; 5; 7).
Требуется:
1) записать векторы AB и AC в системе орт и найти модули этих векторов;
2) найти угол между векторами AB и AC;
3) составить уравнение плоскости, проходящее через точку С перпендикулярно вектору AB.

Описание:
Подробное решение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти значение ctg75°Объем конуса равен 28. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.
Найти скалярное и векторное произведение векторов a = (4;7;3), b = (0;1;1)2. Составить уравнение геометрического места точек, каждая из которых находится вдвое дальше от точки A(3;0), чем от оси ординат.
Даны векторы a(2;0;1),b(-1;1;0),c(0;1;-3) . Вычислить направляющие косинусы вектора a + 2bНайти значение ctg2α, если известно, что sinα = 1/4, α лежит в первой четверти.
Найти вектор x , удовлетворяющий условиям
Даны координаты вершин пирамиды A1A2A3A4. Средствами векторной алгебры найти:
1) угол между ребрами A1A2 и A1A4;
2) площадь грани A1A2A3;
3) проекцию вектора A1A3 на вектор A1A4;
4) объем пирамиды;
Вариант 7

Даны координаты вершин пирамиды ABCD. A(8;4;8), B(0;5;2), C(7;1;3); D(4;6;0)
Для данной поверхности найти уравнение касательной плоскости и нормали в указанной точке:
4+√(x2+y2+z2 )=x+y+x, M(2,3,6)