Артикул: 1139561

Раздел:Технические дисциплины (85831 шт.) >
  Математика (32292 шт.) >
  Аналитическая геометрия (2160 шт.)

Название или условие:
Упростить выражение

Изображение предварительного просмотра:

Упростить выражение

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Дано: AB=DC=|b|=1, BC=|a|=4, ABC=120°
Найти AC-? BD-?

6)
Напишите уравнение плоскости, параллельной Ох и проходящей через точки М (2;2;0) и N (4;0;0).
Даны координаты вершин пирамиды A1A2A3A4. Средствами векторной алгебры найти:
1) угол между ребрами A1A2 и A1A4;
2) площадь грани A1A2A3;
3) проекцию вектора A1A3 на вектор A1A4;
4) объем пирамиды;
Вариант 7

Найти значение ctg2α, если известно, что sinα = 1/4, α лежит в первой четверти.
Даны координаты точек А, В, С: А(1; 1; 3), B (–4; 0; 3), C (–1; 5; 7).
Требуется:
1) записать векторы AB и AC в системе орт и найти модули этих векторов;
2) найти угол между векторами AB и AC;
3) составить уравнение плоскости, проходящее через точку С перпендикулярно вектору AB.
Напишите уравнение плоскости, проходящей через точку М (2;2;-2) и параллельной прямой х-2у-3z=0.
Для данной поверхности найти уравнение касательной плоскости и нормали в указанной точке:
4+√(x2+y2+z2 )=x+y+x, M(2,3,6)

В треугольнике KLM угол M - прямой, KL = 29, LM = 21. Найдите tg∠K
Убедиться, что векторы a = 4i + 3 j,b = 5k могут быть взяты за ребра куба. Найти третье ребро c .Найти скалярное и векторное произведение векторов a = (4;7;3), b = (0;1;1)