Дан параллелепипед ABCDA1B1C1D1. Принимая за начало координат вершину A, а за базисные векторы AB, AD, AA , найти координаты: а) вершин C, B1, C1; б) точек K и L – середин ребер A1B1 и CC1 соответственно
 | Даны координаты вершин пирамиды ABCD. A(8;4;8), B(0;5;2), C(7;1;3); D(4;6;0)
 |
Объем конуса равен 28. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса. | На клетчатой бумаге с клетками размером 1 см х 1 см изображена трапеция. Найдите ее площадь в квадратных сантиметрах
 |
Вычислить:
 | Даны координаты вершин пирамиды A1A2A3A4. Средствами векторной алгебры найти: 1) угол между ребрами A1A2 и A1A4; 2) площадь грани A1A2A3; 3) проекцию вектора A1A3 на вектор A1A4; 4) объем пирамиды; Вариант 7
 |
Вычислить площадь треугольника с вершинами A(1;1;1), B(2;3;4), C(4;3;2). Найдем площадь треугольника, как половину длины векторного произведения векторов AB, AC | Найти значение ctg2α, если известно, что sinα = 1/4, α лежит в первой четверти. |
6) Напишите уравнение плоскости, параллельной Ох и проходящей через точки М (2;2;0) и N (4;0;0). | Убедиться, что векторы a = 4i + 3 j,b = 5k могут быть взяты за ребра куба. Найти третье ребро c . |