Артикул: 1139549

Раздел:Технические дисциплины (85820 шт.) >
  Математика (32281 шт.) >
  Аналитическая геометрия (2149 шт.)

Название или условие:
Дан параллелепипед ABCDA1B1C1D1. Принимая за начало координат вершину A, а за базисные векторы AB, AD, AA , найти координаты:
а) вершин C, B1, C1;
б) точек K и L – середин ребер A1B1 и CC1 соответственно

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Дан параллелепипед ABCDA<sub>1</sub>B<sub>1</sub>C<sub>1</sub>D<sub>1</sub>. Принимая за начало координат вершину A, а за базисные векторы AB, AD, AA , найти координаты: <br /> а) вершин C, B<sub>1</sub>, C<sub>1</sub>; <br /> б) точек K и L – середин ребер A<sub>1</sub>B<sub>1</sub> и CC<sub>1</sub> соответственно

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти значение ctg2α, если известно, что sinα = 1/4, α лежит в первой четверти. Даны координаты вершин пирамиды A1A2A3A4. Средствами векторной алгебры найти:
1) угол между ребрами A1A2 и A1A4;
2) площадь грани A1A2A3;
3) проекцию вектора A1A3 на вектор A1A4;
4) объем пирамиды;
Вариант 7

При каком значении λ векторы a,b,c будут компланарны: a(1;2λ;1),b(1;λ;0),c(0;λ;1)Для данной поверхности найти уравнение касательной плоскости и нормали в указанной точке:
4+√(x2+y2+z2 )=x+y+x, M(2,3,6)

Найти скалярное и векторное произведение векторов a = (4;7;3), b = (0;1;1)Напишите уравнение плоскости, проходящей через точку М (2;2;-2) и параллельной прямой х-2у-3z=0.
a1 = 3, a2 = 4, (a1,a2) = 2π/3. Вычислить (a1 + a2)2
Вычислить:
Параллелограмм OBCA построен на векторах OA = i - j + 2k,OB = 2i -6 j + 4k .Точка M – середина стороны AC. Найти угол между OM и диагональю OC.Найти значение ctg75°