Даны три вектора a(1;-1;1),b(5;1;1),c(0;3;-2) . Вычислить b(a;c) -c(a;b) . | Показать, что четырехугольник ABCD – ромб, если A(1;2;2), B(3;5;8), C(-3;2;6), D(-5;-1;0). Найти угол при вершине ромба. |
В треугольнике KLM угол M - прямой, KL = 29, LM = 21. Найдите tg∠K | На клетчатой бумаге с клетками размером 1 см х 1 см изображена трапеция. Найдите ее площадь в квадратных сантиметрах
|
Даны вершины треугольника АВС A(-8; -4), B(4;5), C(2;-9) . Найти: 1) длину стороны АВ; 2) уравнения сторон АВ и АС и их угловые коэффициенты; 3) внутренний угол А в радианах с точностью до 0,01; 4) уравнение высоты CD и ее длину; 5) уравнение окружности, для которой высота CD есть диаметр; 6) систему линейных неравенств, определяющих треугольник ΔABC. | Даны координаты вершин пирамиды ABCD. A(8;4;8), B(0;5;2), C(7;1;3); D(4;6;0)
|
Даны координаты вершин пирамиды A1A2A3A4. Средствами векторной алгебры найти: 1) угол между ребрами A1A2 и A1A4; 2) площадь грани A1A2A3; 3) проекцию вектора A1A3 на вектор A1A4; 4) объем пирамиды; Вариант 7
| Вычислить:
|
Напишите уравнение плоскости, проходящей через точку М (2;2;-2) и параллельной прямой х-2у-3z=0. | Найти значение ctg2α, если известно, что sinα = 1/4, α лежит в первой четверти. |