Артикул: 1139558

Раздел:Технические дисциплины (85828 шт.) >
  Математика (32289 шт.) >
  Аналитическая геометрия (2157 шт.)

Название или условие:
Убедиться, что векторы a = 4i + 3 j,b = 5k могут быть взяты за ребра куба. Найти третье ребро c .

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Даны координаты вершин пирамиды A1A2A3A4. Средствами векторной алгебры найти:
1) угол между ребрами A1A2 и A1A4;
2) площадь грани A1A2A3;
3) проекцию вектора A1A3 на вектор A1A4;
4) объем пирамиды;
Вариант 7

На клетчатой бумаге с клетками размером 1 см х 1 см изображена трапеция. Найдите ее площадь в квадратных сантиметрах
Определить координаты точки M, если ее радиус-вектор составляет с координатными осями одинаковые углы и его модуль равен 3.Параллелограмм OBCA построен на векторах OA = i - j + 2k,OB = 2i -6 j + 4k .Точка M – середина стороны AC. Найти угол между OM и диагональю OC.
Найти значение ctg75°Вычислить:
Найти вектор x , удовлетворяющий условиям
Найти значение ctg2α, если известно, что sinα = 1/4, α лежит в первой четверти.
Для данной поверхности найти уравнение касательной плоскости и нормали в указанной точке:
4+√(x2+y2+z2 )=x+y+x, M(2,3,6)

Упростить выражение