Для данной поверхности найти уравнение касательной плоскости и нормали в указанной точке: 4+√(x2+y2+z2 )=x+y+x, M(2,3,6)
| Определить координаты точки M, если ее радиус-вектор составляет с координатными осями одинаковые углы и его модуль равен 3. |
Объем конуса равен 28. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса. | На клетчатой бумаге с клетками размером 1 см х 1 см изображена трапеция. Найдите ее площадь в квадратных сантиметрах
|
При каком значении x четырехугольник с вершинами A(3;-1;2), B(1;x;-1), C(-1;1;-3), D(3;-5;3) является трапецией? | Дан параллелепипед ABCDA1B1C1D1. Принимая за начало координат вершину A, а за базисные векторы AB, AD, AA , найти координаты: а) вершин C, B1, C1; б) точек K и L – середин ребер A1B1 и CC1 соответственно
|
Даны три вектора a(1;-1;1),b(5;1;1),c(0;3;-2) . Вычислить b(a;c) -c(a;b) . | Даны координаты точек А, В, С: А(1; 1; 3), B (–4; 0; 3), C (–1; 5; 7). Требуется: 1) записать векторы AB и AC в системе орт и найти модули этих векторов; 2) найти угол между векторами AB и AC; 3) составить уравнение плоскости, проходящее через точку С перпендикулярно вектору AB. |
Вычислить площадь треугольника с вершинами A(1;1;1), B(2;3;4), C(4;3;2). Найдем площадь треугольника, как половину длины векторного произведения векторов AB, AC | При каком значении λ векторы a,b,c будут компланарны: a(1;2λ;1),b(1;λ;0),c(0;λ;1) |