Артикул: 1131647

Раздел:Технические дисциплины (81141 шт.) >
  Математика (30914 шт.) >
  Математическая логика (265 шт.)

Название или условие:
Перед финалом школьного шахматного турнира, в который вышли Александров, Васин и Сергеев, один болельщик сказал, что первое место займет Александров, второй болельщик сказал, что Сергеев не будет последним, а третий — что Васину не занять первого места. После игр оказалось, что один болельщик ошибся, а два других угадали. Как распределились места, если никакие два участника не заняли одно и то же место?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

На числовой прямой даны два отрезка P=[2, 20] и Q=[15, 25]. Выберите такой отрезок A, что формула ((x ∉ A) → (x ∉ P)) ∨ (x ∈ Q) тождественно истина, то есть принимает значение 1 при любом значении переменной x.
1) [0, 15]
2) [10, 25]
3) [2, 10]
4) [15, 20]
Пусть события A, B и C попарно независимы, причём каждое из них имеет вероятность, отличную от нуля и единицы. Проверить, могут ли события A ∩ B , B ∩ C и A ∩ C быть: а) попарно независимыми; б) независимыми в совокупности
На числовой прямой даны два отрезка: P = [10, 30] и Q = [20, 40]. Выберите такой отрезок A, что формула (x ∈ A) → ((x ∈ P) ≡ (x ∈ Q)) тождественно истинна, то есть принимает значение 1 при любом значении переменной х. Если таких отрезков несколько, укажите тот, который имеет большую длину.
1) [10, 19]
2) [21, 29]
3) [31, 39]
4) [9, 41]
На числовой прямой даны два отрезка: P = [10, 20] и Q = [5, 15]. Выберите такой отрезок A, что формула ((x ∈ Q) → (x ∈ P) ) ∧ (x ∈ A) тождественно ложна, то есть принимает значение 0 при любом значении переменной х.
1) [0, 6]
2) [5, 8]
3) [7, 15]
4) [12, 20]
На числовой прямой даны два отрезка: P = [5, 15] и Q = [10, 20]. Выберите такой отрезок A, что формула (x ∈ P) ∧ (x ∉ Q) ∧ (x ∈ A) тождественно ложна, то есть принимает значение 0 при любом значении переменной х.
1) [0, 7]
2) [8, 15]
3) [15, 20]
4) [7, 20]
Постройте СДНФ, СКНФ и МДНФ для булевых функций, заданных таблично:
Результаты опроса 1 000 случайно отобранных молодых людей таковы
Определить, содержится ли в этой информации ошибка.

На числовой прямой даны три отрезка: P = [20, 50], Q = [15, 20] и R= [40,80]. Выберите такой отрезок A, что формула ((x ∈ P) → (x ∈ Q)) ∨ ((x ∈ A) → (x ∈ R)) тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
1) [10, 25]
2) [20, 30]
3) [40, 50]
4) [35, 45]
Составить таблицу истинности для функции
Привести к предваренной нормальной форме и сколемовской нормальной форме:
(∃z)(∀u)(∀x)(∀y)(∃v)(G(x,y,z)W(b)→ Q(z,u,v))