Артикул: 1135074

Раздел:Технические дисциплины (82566 шт.) >
  Математика (31051 шт.) >
  Математическая логика (269 шт.)

Название или условие:
Доказать, что если класс S подмножеств множества элементарных событий Ω, замкнутый относительно операции дополнения, замкнут относительно операции объединения, то он замкнут и относительно операции пересечения.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Составить таблицу истинности для функции
Справедливо ли следующее высказывание:
Построить СКНФ.

Привести к предваренной нормальной форме и сколемовской нормальной форме
: (∀x)(∀a)(∃z)(∀u)(∃v)(F1(x,a,z)→F2(z,u,v)F3(y))

Перед финалом школьного шахматного турнира, в который вышли Александров, Васин и Сергеев, один болельщик сказал, что первое место займет Александров, второй болельщик сказал, что Сергеев не будет последним, а третий — что Васину не занять первого места. После игр оказалось, что один болельщик ошибся, а два других угадали. Как распределились места, если никакие два участника не заняли одно и то же место?
На числовой прямой даны три отрезка P=[10,27], Q=[15,30] и R=[25,40]. Выберите такой отрезок A, что формула ((x ∈ Q) → (x ∉ R)) ∧(x ∈ A) ∧ (x ∉ P) тождественно ложна, то есть принимает значение 0 при любом значении переменной x
1) [0,15]
2) [10,40]
3) [25,35]
4) [15,25]
Доказать, что формула G является логическим следствием формул F1, F2, F3, F4:
Доказать, что формула G является логическим следствием формул F1, F2, F3, F4:
На числовой прямой даны два отрезка: P = [41, 61] и Q = [11, 91]. Выберите такой отрезок A, что формула ((x ∈ P) → (x ∈ А)) ∧ ((x ∈ A) → (x ∈ Q)) тождествен-но истинна, то есть принимает значение 1 при любом значении переменной х. Если таких отрезков несколько, укажите тот, который имеет большую длину.
1) [7, 43]
2) [7, 73]
3) [37, 53]
4) [37, 63]
Упростить выражение:
F=(A⊕B)˅(A⊕B)˅(A⊕B)˅(A⊕B)*.
Построить СДНФ.

На числовой прямой даны три отрезка: P = [10, 50], Q = [15, 20] и R = [30, 80]. Выберите такой отрезок A, что формула ((x ∈ P) → (x ∈ Q)) ∨ ((x ∉ A) → (x ∉ R)) тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
1) [10, 25]
2) [25, 50]
3) [40, 60]
4) [50, 80]