Артикул: 1146798

Раздел:Технические дисциплины (92654 шт.) >
  Математика (32522 шт.) >
  Математическая логика (278 шт.)

Название или условие:
Доказать, что формула G является логическим следствием формул F1, F2, F3, F4:

Изображение предварительного просмотра:

Доказать, что формула G является логическим следствием формул F1, F2, F3, F4:

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

На числовой прямой даны три отрезка P=[5, 10], Q=[10, 20] и R=[25, 40]. Выберите такой отрезок A, что выражения (x ∈ A) → (x ∈ P) и (x ∈ Q) → (x ∈ R) тождественно равны, то есть принимают одинаковые значения при любом значении переменной х (кроме, возможно, конечного количества точек)
1) [7,20]
2) [2,12]
3) [10,25]
4) [20,30]
Справедливо ли следующее высказывание:
Построить СКНФ.

Доказать, что если класс S подмножеств множества элементарных событий Ω, замкнутый относительно операции дополнения, замкнут относительно операции объединения, то он замкнут и относительно операции пересечения. Постройте СДНФ, СКНФ и МДНФ для булевых функций, заданных таблично:
На числовой прямой даны два отрезка: P = [5, 15] и Q = [10, 20]. Выберите такой отрезок A, что формула (x ∈ P) ∧ (x ∉ Q) ∧ (x ∈ A) тождественно ложна, то есть принимает значение 0 при любом значении переменной х.
1) [0, 7]
2) [8, 15]
3) [15, 20]
4) [7, 20]
Лабораторная работа №6
«Системы булевых функций»
Цель работы: освоить методику исследования системы булевых функций на полноту с помощью теоремы Поста
Задание Выяснить, является ли полной заданная система булевых функций, используя теорему Поста.
Вариант 7

Составить таблицу истинности для функции
На числовой прямой даны три отрезка P=[10,27], Q=[15,30] и R=[25,40]. Выберите такой отрезок A, что формула ((x ∈ Q) → (x ∉ R)) ∧(x ∈ A) ∧ (x ∉ P) тождественно ложна, то есть принимает значение 0 при любом значении переменной x
1) [0,15]
2) [10,40]
3) [25,35]
4) [15,25]
На числовой прямой даны три отрезка: P = [10, 40], Q = [5, 15] и R= [35, 50]. Выберите такой отрезок A, что формула ((x ∈ P) → (x ∈ Q)) ∨ ((x ∈ A) → (x ∈ R)) тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
1) [10, 20]
2) [15, 25]
3) [20, 30]
4) [120, 130]
На множестве М задан одноместный предикат Р(х). Выразить следующие утверждения формулами сигнатуры:
«существует не менее одного элемента х, удовлетворяющего предикату Р(х)»;
«существует не более одного элемента х, удовлетворяющего предикату Р(х)»;
«существует точно один элемента х, удовлетворяющего предикату Р(х)»;
«существует не менее двух элементов, удовлетворяющего предикату Р(х)».