Артикул: 1163586

Раздел:Технические дисциплины (107088 шт.) >
  Математика (32805 шт.) >
  Математическая логика (281 шт.)

Название или условие:
Лабораторная работа №6
«Системы булевых функций»
Цель работы: освоить методику исследования системы булевых функций на полноту с помощью теоремы Поста
Задание Выяснить, является ли полной заданная система булевых функций, используя теорему Поста.
Вариант 7

Описание:
Подробное решение в WORD с использованием полинома Жегалкина

Изображение предварительного просмотра:

<b>Лабораторная работа №6</b> <br />«Системы булевых функций» <br /><b>Цель работы:</b> освоить методику исследования системы булевых функций на полноту с помощью теоремы Поста  <br />Задание  Выяснить, является ли полной заданная система булевых функций, используя теорему Поста. <br /><b>Вариант 7</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Результаты опроса 1 000 случайно отобранных молодых людей таковы
Определить, содержится ли в этой информации ошибка.

На числовой прямой даны три отрезка P=[10,27], Q=[15,30] и R=[25,40]. Выберите такой отрезок A, что формула ((x ∈ Q) → (x ∉ R)) ∧(x ∈ A) ∧ (x ∉ P) тождественно ложна, то есть принимает значение 0 при любом значении переменной x
1) [0,15]
2) [10,40]
3) [25,35]
4) [15,25]
На числовой прямой даны два отрезка: P = [6, 24] и Q = [20, 28]. Выберите такой отрезок A, что формула ((x ∉ А) → (x ∉ P)) \/∨ (x∈ ∈ Q) тождественно истинна, то есть принимает значение 1 при любом значении переменной х.
1) [4, 20]
2) [18, 28]
3) [6, 18]
4) [20, 24]
На числовой прямой даны два отрезка P=[2, 20] и Q=[15, 25]. Выберите такой отрезок A, что формула ((x ∉ A) → (x ∉ P)) ∨ (x ∈ Q) тождественно истина, то есть принимает значение 1 при любом значении переменной x.
1) [0, 15]
2) [10, 25]
3) [2, 10]
4) [15, 20]
На множестве М задан одноместный предикат Р(х). Выразить следующие утверждения формулами сигнатуры:
«существует не менее одного элемента х, удовлетворяющего предикату Р(х)»;
«существует не более одного элемента х, удовлетворяющего предикату Р(х)»;
«существует точно один элемента х, удовлетворяющего предикату Р(х)»;
«существует не менее двух элементов, удовлетворяющего предикату Р(х)».
Привести к предваренной нормальной форме и сколемовской нормальной форме
: (∀x)(∀a)(∃z)(∀u)(∃v)(F1(x,a,z)→F2(z,u,v)F3(y))

На числовой прямой даны три отрезка P=[5, 10], Q=[10, 20] и R=[25, 40]. Выберите такой отрезок A, что выражения (x ∈ A) → (x ∈ P) и (x ∈ Q) → (x ∈ R) тождественно равны, то есть принимают одинаковые значения при любом значении переменной х (кроме, возможно, конечного количества точек)
1) [7,20]
2) [2,12]
3) [10,25]
4) [20,30]
Доказать, что формула G является логическим следствием формул F1, F2, F3, F4:
Доказать, что формула G является логическим следствием формул F1, F2, F3, F4:
На числовой прямой даны три отрезка P=[10, 15], Q=[5, 20] и R=[15, 25]. Выберите такой отрезок A, что выражения (x ∉ A) → (x ∈ P) и (x ∈ Q) → (x ∈ R) принимают разные значения при любом значении переменной x (кроме, возможно, конечного количества точек)
1) [7,20]
2) [2,15]
3) [5,12]
4) [20,25]