Артикул: 1131656

Раздел:Технические дисциплины (81141 шт.) >
  Математика (30914 шт.) >
  Математическая логика (265 шт.)

Название или условие:
На числовой прямой даны два отрезка: P = [5, 15] и Q = [10, 20]. Выберите такой отрезок A, что формула (x ∈ P) ∧ (x ∉ Q) ∧ (x ∈ A) тождественно ложна, то есть принимает значение 0 при любом значении переменной х.
1) [0, 7]
2) [8, 15]
3) [15, 20]
4) [7, 20]

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Перед финалом школьного шахматного турнира, в который вышли Александров, Васин и Сергеев, один болельщик сказал, что первое место займет Александров, второй болельщик сказал, что Сергеев не будет последним, а третий — что Васину не занять первого места. После игр оказалось, что один болельщик ошибся, а два других угадали. Как распределились места, если никакие два участника не заняли одно и то же место?Проверьте, являются ли булевы функции F1 и F2 эквивалентными.
F1 = x + (y→z), F2 = (x + y)→(x + z).
Доказать, что если класс S подмножеств множества элементарных событий Ω, замкнутый относительно операции дополнения, замкнут относительно операции объединения, то он замкнут и относительно операции пересечения. Упростить выражение:
F=(A⊕B)˅(A⊕B)˅(A⊕B)˅(A⊕B)*.
Построить СДНФ.

Составить таблицу истинности для функции
Привести к предваренной нормальной форме и сколемовской нормальной форме:
(∃z)(∀u)(∀x)(∀y)(∃v)(G(x,y,z)W(b)→ Q(z,u,v))

Результаты опроса 1 000 случайно отобранных молодых людей таковы
Определить, содержится ли в этой информации ошибка.

Для какого из приведенных чисел Х истинно логическое условие: ¶ ((Х кратно 5) → (Х кратно 25))?
1) 37
2) 59
3) 65
4) 125
Доказать, что формула G является логическим следствием формул F1, F2, F3, F4:
Составить таблицу истинности для функции