Артикул: 1078523

Раздел:Технические дисциплины (80983 шт.) >
  Математика (30881 шт.) >
  Математические методы (27 шт.)

Название или условие:
Квадратичное программирование (реферат)

Описание:
Введение
1. Постановка задачи квадратичного программирования
2. Конечный алгоритм решения задачи квадратичного программирования
3. Применение алгоритма квадратичного программирования на практике
Заключение

Всего 11 страниц

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Методы решения задач линейного целочисленного программирования
Найти целочисленное решение методом Гомори:
f(x) = -x1 - x2 → max
x1 - 2·x2 ≤ 0
x1 - x2 ≥ -1
x1 ≥ 0,75
x1,x2 ≥ 0, целые.

Как производится распределение факторов по степени их влияния на объект исследования? (Ответ на теоретический вопрос - 1 страница)
Методы решения задач линейного целочисленного программирования
Найти целочисленное решение методом ветвей и границ
f(x) = 2x1-x2→max
x1-2x2 ≤ 0
x1 - x2 ≥ -1
x1 + x2 ≤ 3,2
x1,x2 ≥ 0

Что такое критерий Стьюдента? (Ответ на теоретический вопрос - 2 страницы)
Необходимые и достаточные условия условного экстремума
Проверить, является ли точка x *= (0,2)T решением задачи f(x) = x12+(x2-2)2→min
x12 + x1x2 + x22 ≤ 16
x12 - x1x2 + x22 ≤ 16

Необходимые и достаточные условия условного экстремума
Решить задачу:
f(x) = x12 + (x2 - 4)2 → min
x12 + x22 ≤ 4, 4x12 + x22 ≥ 4

Как производится выбор границ областей желательности? Как выбрать числовые значения границ желательности? (Ответ на теоретический вопрос - 2 страницы)Методы первого порядка
Методами наискорейшего градиентного спуска и покоординатного спуска из начальных точек x0 = (0,3)Т и x0 = (3,0)Т решить задачу:
f(x) = (x22 + x12 -1)2 + (x1 + x2 -1)2 → min

При изучении влияния факторов алюминотермического способа восстановления Ме из фторида в качестве параметров оптимизации взято: Y1 - степень восстановления Ме, %; Y2 - размер частиц, образующегося порошка Ме, мкм. Необходимо, чтобы высокая степень восстановления Ме сочеталась с крупностью зерен от 10 до 60 мкм.
Требуется:
1) построить график функции Харрингтона;
2) построить оси натуральных значений обобщаемых параметров;
3) поставить числовые значения границ;
4) разбить отрезки в масштабе;
5) определить значения обобщаемых параметров;
6) обработать полученные результаты.

Методы первого порядка
Методом наискорейшего градиентного спуска и методом покоординатного спуска из начальной точки x0 = (0,1;0,5)T
f(x) = -x12 + exp[1-x12-20,25∙(x1-x2)2 ]→min