Артикул: 1027770

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название:Колесо диаметром 60 см вращается вокруг неподвижной оси, проходящей через его центр перпендикулярно плоскости колеса, согласно заданному уравнению.
Определить скорость и ускорение точки обода колеса в конце второй секунды.
Дано: D = 60см, φ = 20+20t - t3, t=2c
Найти: V, aT, an

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Колесо диаметром 60 см вращается вокруг неподвижной оси, проходящей через его центр перпендикулярно плоскости колеса, согласно заданному уравнению. <br />Определить скорость и ускорение точки обода колеса в конце второй секунды. <br />Дано: D = 60см, φ = 20+20t - t<sup>3</sup>, t=2c<br /> Найти:  V, a<sub>T</sub>, a<sub>n</sub>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Дано:
y = 2sin(πt/6) см
x = 2 - 3cos(πt/3) см
t1 = 0, t2 = 1 c
Точка движется а плоскости oxy. Уравнение движения точки задано координатами: x = x(t), y = y(t), где x и y в сантиметрах, t - в секундах. Уравнение y = y(t) дано в таблице 1 - номер варианта соответствует сумме трех последних цифр номера зачетной книжки (г + д + е). Уравнение x = x(t) дано в таблице 2, где номер столбца выбирается в соответствии с номером варианта, а номер строки соответствует последней цифре номера зачетной книжки (е).
Требуется:
- записать уравнение траектории в декартовой системе координат: y = y(x);
- построить траекторию;
- определить положение точки на траектории в начальный момент времени t = 0 c, направление движения точки по траектории, положение точки на траектории через t = 1 c
- вычислить вектор скорости u и вектор ускорения а точки для t = 0 и t = 1 c
- задать движение точки естественным способом: s = s(t)
- вычислить нормальную и касательную составляющие ускорения точки для t = 0 и t = 1 c геометрически и аналитически
- вычислить радиус кривизны для t = 0 и t = 1 c
Функциональные зависимости y = y(t), x= x(t) заданы в таблицах 2.1(а) и 2.2.(б) соответственно

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 30)
x = 2cos((πt2)/3) - 2
y = - 2sin((πt2)/3) + 3

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t) , принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x=3cos π/6 t - 1,5, y=4-4cos π/3 t

Задача К1
Известен закон движения точки M в плоскости Oxy: x = 4 − 2t, y = 3 − 4 cos(πt/4).
Требуется найти вид ее траектории. Для заданного момента времени t1 = 1 с определить:
- положение точки M на траектории;
- скорость и ускорение точки M;
- ее касательное и нормальное ускорения;
- радиус кривизны в соответствующей точке траектории.

ЗАДАНИЕ К1 Вариант 26
Дано: уравнения движения точки в плоскости ху: x = 4-2t, y = 1-3t2; t1 = 1 с.
Найти уравнение траектории точки; для момента времени t1 = 1 с определить скорость, ускорение и радиус кривизны траектории

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 29)
x = 5t2 + (5t/3) - 3, y = 3t2 + t + 3, t = 1 c

Задача К1
В соответствии с заданными уравнениями движения определить траекторию движения точки.
Для заданного момента времени t найти положение точки на траектории, её скорость и ускорение (показать их на рисунке), а также радиус кривизны траектории в соответствующей точке.
Координаты х и у даны в метрах, время t в секундах.
x = 3t2+6t+12, y=t2+2t+6, t1=2c.

Даны уравнения движения груза, сброшенного с самолета.
Определить:
1) время Т и дальность L полета груза;
2) скорость груза в момент падения;
3) ускорение груза.
Дано: x=90t, y=1500-4,9t2
Найти: Т, L, υ, а.

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т в которое точка пройдет полную окружность. Дано: x=4sin π/3 t-2, y=4cos π/3 t+2

Задание 1. Кинематика точки
1. Выбор исходных данных.
2.Определение уравнения траектории и построение её на чертеже.
3. Для заданного момента времени t, определение:
3.1. Положения точки на траектории.
3.2. Вектора полной скорости.
3.3.Векторов касательного, нормального и полного ускорений.
3.4. Радиуса кривизны траектории.
4. Выводы
Вариант АБВ = 342
x=2-t
y=2+2cos(πt/4)
t1 = 1.65 c