Артикул: 1027651

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название:Даны уравнения движения точки:
1. Определить уравнение траектории точки.
2. Определить скорость и ускорение точки при t=0 и t=1 c .

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Даны уравнения движения точки: <br />1. Определить уравнение траектории точки. <br />2. Определить скорость и ускорение точки при t=0  и t=1 c .

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Даны уравнения движения груза, сброшенного с самолета.
Определить:
1) время Т и дальность L полета груза;
2) скорость груза в момент падения;
3) ускорение груза.
Дано: x=60t, y=2000-4,9t2
Найти: Т, L, υ, а.

Задача К1
В соответствии с заданными уравнениями движения определить траекторию движения точки.
Для заданного момента времени t найти положение точки на траектории, её скорость и ускорение (показать их на рисунке), а также радиус кривизны траектории в соответствующей точке.
Координаты х и у даны в метрах, время t в секундах.
x = 3t2+6t+12, y=t2+2t+6, t1=2c.

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 30)
x = 2cos((πt2)/3) - 2
y = - 2sin((πt2)/3) + 3

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t) , принимая за начало отсчета расстояний начальное положение точки.
5. Построить график движения точки.
Дано: x=3cos π/6 t - 1,5, y=4-4cos π/3 t

ЗАДАНИЕ К1 Вариант 26
Дано: уравнения движения точки в плоскости ху: x = 4-2t, y = 1-3t2; t1 = 1 с.
Найти уравнение траектории точки; для момента времени t1 = 1 с определить скорость, ускорение и радиус кривизны траектории

По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 29)
x = 5t2 + (5t/3) - 3, y = 3t2 + t + 3, t = 1 c

Даны уравнения движения точки.
1. Определить уравнение траектории и построить ее.
2. Определить начальное положение точки на траектории.
3. Указать моменты времени, когда точка пересекает оси координат.
4. Найти закон движения точки по траектории s=φ(t), принимая за начало отсчета расстояний начальное положение точки.
5. Определить время Т, в которого точка пройдет полную окружность.
Дано: x=8sin π/2 t-4, y=8cos π/2 t + 4

Задача К1
8 вариант
Дано:
t1=1с
х = 4 - 6 sin(πt/6), см
у = 8 cos(πt/6) - 3, см
Найти уравнение траектории точки М; для момента времени t1=1с найти положение точки на траектории, ее скорость, полное ускорение, касательное и нормальное ускорения, а также радиус кривизны в соответствующей точке.
Задано движение точки. Записать векторы скорости и ускорения точки, записать выражение модулей скорости и ускорения точки. Для момента времени t = 1 с показать положение точки, изобразить векторы скорости и ускорения x = 1 -2t2, y = 2t – t3
По заданным уравнениям движения точки М установить вид её траектории и для момента t=t1(c) найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории (задача К - 1 вариант 13)
x=5cos(πt2/3);
y= -5sin(πt2/3);
t1= 1(x и y – в см, t и t1 – в с).