Артикул: 1027442

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название или условие:
Даны уравнения движения точки М шатуна АВ кривошипно-ползунного механизма (рис. ):x=20 cos⁡(2π);y=40sin⁡(2π) (где x, y - в метрах, t - в секундах).
1. Определить уравнение траектории точки.
2. Определить скорость и ускорение точки в момент, когда она пересечет прямую y = 20 см

Описание:
Подробное решение

Изображение предварительного просмотра:

Даны уравнения движения точки М шатуна АВ кривошипно-ползунного механизма (рис. ):x=20 cos⁡(2π);y=40sin⁡(2π)  (где x, y - в метрах, t - в секундах). <br />1. Определить уравнение траектории точки. <br />2. Определить скорость и ускорение точки в момент, когда она пересечет прямую y = 20 см

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача 3. Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории.
Вариант 8

Вариант 28
Задача 2.
Точка движется по уравнениям x=20t2+5, y=15t2-3 (м/с). Определить скорость, касательное, нормальное и полное ускорение точки, а также радиус кривизны траектории при t=2 сек.
По данным уравнениям движения точки М установить вид её траектории и для момента величины t1 найти положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны в данной точке.
Вариант 9

Тема: Кинематика точки.
В соответствии с заданными уравнениями движения определить траекторию движения точки. Для заданного момента времени найти положение точки на траектории, её скорость и ускорение, касательное и нормальное ускорения ,а также радиус кривизны траектории в соответствующей точке. Сделать чертеж.
Вариант 8

Задача 2
Груз, сброшенный с самолета на высоте h=3000 м, движется по уравнению r=40ti+5t2j (м,с).
Построить траекторию движения груза и найти расстояние по горизонтали между точками сброса и падения.
К1.
По данным уравнениям движения точки М установить вид её траектории и для момента величины t_0, t_1, найти положение точки на траектории, для момента времени t_1, найти её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны в данной точке.
Вариант 1

Практическая работа №3
Уравнения траектории движения материальной точки.

Найти уравнение траектории точки, а также для момента времени t = t1 (c) определить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории в соответствующей точке.
Вариант 11
x(t)=0.5t2+1.5,см;
y(t)=2t2-5,см;
t1=2.2 c;

Точка М движется по заданной траектории по закону s(t)=6t-0.5t2 (м). В какой момент времени t скорость точки равна 0 (м/с)
Практическая работа №3
Уравнения траектории движения материальной точки.

Найти уравнение траектории точки, а также для момента времени t = t1 (c) определить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории в соответствующей точке.
Вариант 10
x(t)=-0.2t2+1,см;
y(t)=t2+3t,см;
t1=1.2 c;

Задача 2. Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории.
Вариант 10