Артикул: 1018125

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название или условие:
Задача Д3 из сборника Тарга, вариант 00
Дано: m1 = 2 кг, m2 = 6 кг, m3 = 12 кг, r = 0.4 м, R = 0.8 м. φ1 = π/3(t2 + 1), φ2 = π/6(t2 - 2). Найти x3 = f3 = (t) - закон движения плиты.

Описание:
Подробное решение в WORD

Поисковые тэги: Задачник Тарга 1989г.

Изображение предварительного просмотра:

Задача Д3 из сборника Тарга, вариант 00<br /> Дано: m<sub>1</sub> = 2 кг,  m<sub>2</sub> = 6 кг, m<sub>3</sub> = 12 кг, r = 0.4 м, R = 0.8 м. φ<sub>1</sub> =  π/3(t<sup>2</sup> + 1), φ<sub>2</sub> = π/6(t<sup>2</sup> - 2).  Найти x<sub>3</sub> = f<sub>3</sub> = (t) - закон движения плиты.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача 3. Применение принципа возможных перемещений к определению реакций опор составной конструкции
Применяя принцип возможных перемещений, определить реакции составной конструкции. Схемы конструкций показаны на рис. Д3.0 – Д3.9, а необходимые для решения данные приведены в табл. Д3. На рисунках все размеры указаны в метрах.
Вариант 13 (Схема 3 Данные 1)

Общие теоремы динамики материальной точки
Шарик массы т движется из положения А внутри изогнутой трубки, расположенной в вертикальной плоскости. Шарик, пройдя путь 1, отделяется от пружины. В точке В шарик, не меняя значения своей скорости, переходит на участок ВС, где на него дополнительно действует переменная сила F, направление которой указано на рисунке. Пользуясь общими теоремами динамики точки, определить скорость шарика в положениях В и С. В задании приняты следующие обозначения: 1 - начальная скорость шарика, АВ - длина участка, 7 - время движения на участке ВС, f - коэффициент трения скольжения шарика по стенке трубки, с коэффициент жесткости пружины.
Вариант 8

Задача Д1
Динамика материальной точки

Груз D массой m, получив в точке А начальную скорость, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости.
На участке АВ на груз кроме силы тяжести действует постоянная сила Q=10Н, направленная от точки А к точке В, и сила сопротивления среды R , зависящая от скорости V груза D: R=μVn.
В точке В груз, изменив направление приобретенной скорости, но, сохранив при этом ее величину, переходит на участок ВС трубы, где на него, помимо силы тяжести действует сила трения (коэффициент трения груза о трубу f=0,2) и переменная по величине сила F=F(t), направленная вдоль участка ВС. Проекция Fx последней на ось Вх задается.
Считая груз D материальной точкой, и зная расстояние АВ или время t движения груза от точки А до точки В, найти уравнение х=х(t) движения груза на участке ВС.
Вариант 11-5

Задача 3.1.
Дано: Тело М весом Р брошено вниз со скоростью v0. При движении на тело действует сила ветра F. В начальный момент тело находилось в положении Мо.
v0 = 24 м/с, a = 6 м, F = 2 Н, P = 30 Н .
Определить уравнения движения.
9. Груз массой m = 10 кг опускается вертикально на парашюте без начальной скорости. Сопротивление воздуха пропорционально скорости R=-20v Определить скорость груза в момент времени t = 1 с.Задание Д9. Применение теоремы об изменении кинетического момента к определению угловой скорости твердого тела
Тело Н массой m1 вращается вокруг вертикальной оси z с постоянной угловой скоростью ω0; при этом в точке О желоба АВ тела Н на расстоянии АО от точки А, отсчитываемом вдоль желоба, находится материальная точка К массой m2. В некоторый момент времени (t = 0) на систему начинает действовать пара сил с моментом Mz = Mz(t). При t = τ действие сил прекращается.
Определить угловую скорость ωτ тела Н в момент t = τ.
Тело Н вращается по инерции с угловой скоростью ωτ.
В некоторый момент времени t1 = 0 (t1 - новое начало отсчета времени) точка К (самоходный механизм) начинает относительное движение из точки О вдоль желоба АВ (в направлении к В) по закону OK = s = s (t1).
Определить угловую скорость ωТ тела Н при t1 = Т.
Тело Н рассматривать как однородную пластинку, имеющую форму, показанную на рисунке.
Вариант 7
Дано: m1 = 300 кг; m2 = 50 кг; ω = - 2 рад/с; а = 1,6 м; b = 1 м; R = 0,8 м; АО = 0; Mz=Mz*=968 Нм ; τ = 1 с; OK=s =(πR/2)·t12 ; Т = 1 с.

Задача 25
Груз массой m, двигаясь по наклонной плоскости, под действием силы F проходит путь S за время t. Считая движение груза равноускоренным с начальной скоростью V0 = 0 м/с, определить величину силы F, если коэффициент трения равен f.

Динамика точки. Вариант 8
На тело массой m, движущееся по горизонтальной гладкой поверхности вдоль оси x, действует сила, проекция которой равна Fx = −0,5x. В начальный момент x0 = 0, v0x = 10 м⁄с. Определить максимальное значение координаты x тела
Задача Д2
4.2.1. Условия задачи. Механическая система (рис. 4.3) включает два ступенчатых шкива 1,2, обмотанных нитями, грузы 3, 4, 5, 6, прикрепленные к этим нитям, и невесомый блок, предназначенный для изменения направления нити. Система движется в вертикальной плоскости под действием сил тяжести грузов и пары сил с моментом М, приложенной к одному из шкивов.
Радиусы внешних ступеней шкивов R1 и R2, веса шкивов Р1, Р2 и грузов Р3, Р4, Р5, Р6, а также величина момента М для конкретных вариантов задачи приведены в табл. Д2. Радиусы внутренних ступеней шкивов ri = 0,5Ri (i = 1,2), радиусы инерции шкивов относительно осей вращения ρi = 0,6Ri.
Пренебрегая силами трения и считая нити нерастяжимыми, определить:
- линейные ускорения грузов;
- угловые ускорения шкивов;
- силы натяжения нитей на участках между грузами и шкивами.
Провести проверку и оценить погрешность решения с помощью уравнения движения шкива, к которому приложен момент М.
Вариант 789

Задача Д1
Динамика точки

Твердое тело, размерами которого в данной задаче можно пренебречь, движется из точки А по участку АВ (длиной l) по наклонной поверхности, составляющей угол α с горизонтом, в течение τ секунд. Его начальная скорость VA. Коэффициент трения скольжения тела по плоскости равен f.
В точке В тело покидает плоскость со скоростью VB и попадает со скоростью VB в точку С плоскости BD, наклоненной под углом β к горизонту, находясь в воздухе Т секунд. Сопротивление воздуха не учитывать.
Вариант 1
Дано: α = 30°; VA= 1 м/с ; f = 0.3; l=10 м; β= 60°;
Определить время τ и высоту h