Артикул: 1161681

Раздел:Технические дисциплины (105214 шт.) >
  Теоретическая механика (теормех, термех) (2050 шт.) >
  Динамика (380 шт.)

Название или условие:
Задача Д1. Интегрирование ДУ движения материальной точки, находящейся под действием постоянных сил.
Варианты 6-0 (рис.20 приложения, схема 2 и данные в таблице 32). Лыжник подходит к точке A участка трамплина AB, наклонённого под углом α к горизонту и имеющего длину l, со скоростью vA. Коэффициент трения скольжения лыж на участке AB равен f. Лыжник от A до B движется τ с; в точке B он покидает трамплин со скоростью vB. Через T с лыжник приземляется со скоростью vC в точке C горы, составляющей угол β с горизонтом.
При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха
Вариант 0

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задача Д1. Интегрирование ДУ движения материальной точки, находящейся под действием постоянных сил.</b> <br />Варианты 6-0 (рис.20 приложения, схема 2 и данные в таблице 32). Лыжник подходит к точке A участка трамплина AB, наклонённого под углом α к горизонту и имеющего длину l, со скоростью v<sub>A</sub>. Коэффициент трения скольжения лыж на участке AB равен f. Лыжник от A до B движется τ с; в точке B он покидает трамплин со скоростью v<sub>B</sub>. Через T с лыжник приземляется со скоростью v<sub>C</sub> в точке C горы, составляющей угол β с горизонтом. <br />При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха<br /> <b>Вариант 0</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача 3.2
Вертикальный вал АВ (рис.1.2), вращающийся с постоянной угловой скоростью ω, закреплен подпятником в точке А и цилиндрическим подшипником в точке В К валу жестко прикреплен невесомый стержень длиной l с точечной массой m на конце. Пренебрегая весом вала, определить реакции подпятника А и подшипника В.
Вариант 5
Дано: ω=10c-1-const, l=0.4м, a=b=0.6м, m=2кг, α=60°, g≈10м/c2.
Определить: YA, ZA, RB-?

Практическое задание 5
«Движение материальной точки под действием постоянных сил»
Вариант 17.
Варианты 16…20 (схема 4). Камень скользит в течение τ секунд по участку АВ откоса, составляющему угол α с горизонтом и имеющему длину l. Его начальная скорость VA. Коэффициент трения скольжения камня но откосу равен f. Имея в точке В скорость VB камень через Т секунд ударяется в точке С о вертикальную защитную стену. При решении задачи принять камень за материальную точку; сопротивление воздуха не учитывать.
Дано: VB=2*VA, α=45°, l =6м, τ=1с, h=6м

Груз D массой m, получив в точке А начальную скорость V0, движется в изогнутой трубе ABC, расположенной в вертикальной плоскости; участки трубы один горизонтальный, другой вертикальный. На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рис.1.1) и сила сопротивления среды R, зависящая от скорости V груза (направлена против движения), трением груза о трубу на участке АВ пренебречь. В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действуют сила трения (коэффициент трения груза о трубу f) и переменная сила F, проекция которой F_x на ось Bх задана. Считая груз материальной точкой и зная время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС.
Вариант 3.6

Задача 3.1
Груз массой m, получив в точке А начальную скорость V0, движется по гладкой горизонтальной поверхности под действием постоянной силы Q. На груз действует сила сопротивления R, зависящая от скорости груза. Определить скорость груза в момент времени t1.
Вариант 5
Дано: R=µ*V=0.4*V(H), m=4кг, V0=20м/с, µ=0.4H*c/м, t1=5c, g≈9.81м/c2, Q=4H.
Определить: V1-?
Практическое задание 6
«Теорема об изменении кинетической энергии механической системы»
Механизм, состоящий из груза А, блока В (больший радиус – R, меньший – r, радиус инерции относительно центральной оси – i) и однородного круглого цилиндра С радиусом RC, установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Качение цилиндра (блока) происходит без проскальзывания. Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела, параллельны плоскостям. Какую скорость развил груз А, переместившись на расстояние SA?
Вариант 14 (Схема 14)
Дано: mA=9кг, mB=3кг, mC=12кг, α=30°, β=45°, RC=18см=0.18м, g≈9.8м/с2, R=36см=0.48м, r=24см=0.24м, i=32см=0.32м, SA=1м.
Определить: VA(SA)-?

Задача №4
Применение теоремы об изменении кинетической энергии

Груз 1 (массой m1) поднимается при помощи троса (рис. 1), перекинутого через блок 3 (радиуса r и масса m3), который приводится во вращение электромотором, создающим постоянный вращающий момент МО. Определить угловую скорость вращения барабана 2 в тот момент, когда груз 1 поднимется на высоту h. Барабан 2 имеет форму цилиндра, а блок 3 форму диска. В начальный момент времени система находилась в покое. Массой троса пренебречь.
Вариант 2
Дано: m1 = 9 кг; m2 = 14 кг; m = 0,6 кг; R = 0,2 м; r = 0,1 м; МО = 350 Н∙м; h = 0,6 м.

Задача Д1
Динамика материальной точки

Груз D массой m, получив в точке А начальную скорость, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости.
На участке АВ на груз кроме силы тяжести действует постоянная сила Q=10Н, направленная от точки А к точке В, и сила сопротивления среды R , зависящая от скорости V груза D: R=μVn.
В точке В груз, изменив направление приобретенной скорости, но, сохранив при этом ее величину, переходит на участок ВС трубы, где на него, помимо силы тяжести действует сила трения (коэффициент трения груза о трубу f=0,2) и переменная по величине сила F=F(t), направленная вдоль участка ВС. Проекция Fx последней на ось Вх задается.
Считая груз D материальной точкой, и зная расстояние АВ или время t движения груза от точки А до точки В, найти уравнение х=х(t) движения груза на участке ВС.
Вариант 11-5

Практическое задание 7
«Общее уравнение динамики»
Номер варианта задается преподавателем и соответствует номеру на рисунке. Для заданной механической системы определить ускорение груза. Массами нитей пренебречь. Трение качения и силы сопротивления в подшипниках не учитывать. Система движется из состояния покоя.
Варианты механических систем показаны на рисунке, необходимые для решения данные приведены в таблице.
Блоки и катки, для которых радиусы инерции в таблице указаны, считать сплошными однородными цилиндрами.
Вариант 20 (Схема 20)
Дано: G1=4*G, G2=0.2*G, G3=0.1*G, G4=3*G, R2=1.8*r, r2=1.5*r, i2=1.6*r, i3=r*√2, R3=2*r, r3=r, g≈10м/с2.
Найти: a1, T1-?

Задача 3.1.
Дано: Тело М весом Р брошено вниз со скоростью v0. При движении на тело действует сила ветра F. В начальный момент тело находилось в положении Мо.
v0 = 24 м/с, a = 6 м, F = 2 Н, P = 30 Н .
Определить уравнения движения.
Задание Д1. Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил
Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом α к горизонту и имеющего длину l (рис. 9), со скоростью vA. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется τ с; в точке В со скоростью vB он покидает трамплин. Через Т с лыжник приземляется со скоростью vC в точке С горы, составляющей угол β с горизонтом. При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха.
Вариант 7
Числовые данные: α = 15°; f = 0,1; vA = 16 м/с; l = 5 м; β = 45°. Определить vВ и Т.