Артикул: 1163438

Раздел:Технические дисциплины (106940 шт.) >
  Теоретическая механика (теормех, термех) (2107 шт.) >
  Динамика (381 шт.)

Название или условие:
Определить:
1. главный вектор сил инерции блока 2;
2. главный момент сил инерции блока 2;
3. натяжение нити между грузом и блоком;
4. массу груза 1;
5. минимальную массу груза 1, при которой система будет находиться в покое.
Вариант 22

Описание:
Подробное решение в WORD - общее уравнение динамики

Изображение предварительного просмотра:

Определить: <br />1.	главный вектор сил инерции блока 2;  <br />2.	главный момент сил инерции блока 2; <br />3.	натяжение нити между грузом и блоком; <br />4.	массу груза 1; <br />5.	минимальную массу груза 1, при которой система будет находиться в покое.<br /><b>Вариант 22</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задание Д6
Шарик, принимаемый за материальную точку, движется из положения А внутри трубки, ось которой расположена в вертикальной плоскости (рис. 1). Найти скорость шарика в положениях B и C и давление шарика на стенку трубки в положении C. Трением на криволинейных участках траектории пренебречь.
Вариант 7
Дано: m = 0,4 кг; VА = 5 м/с; τ = 5 с; R = 1,0 м; f = 0,10; α = 30°; h0 = 5 см; с = 5 Н/см.

Задача 3.1.
Дано: Тело М весом Р брошено вниз со скоростью v0. При движении на тело действует сила ветра F. В начальный момент тело находилось в положении Мо.
v0 = 24 м/с, a = 6 м, F = 2 Н, P = 30 Н .
Определить уравнения движения.
Лыжник массой m = 70 кг опускается без начальной скорости по склону, составляющему угол α = 30° с горизонтом, не отталкиваясь палками. Длина спуска l = 100 м, коэффициент трения скольжения лыж о снег f = 0.1. Сила сопротивления воздуха пропорциональна квадрату скорости R = 0.4v2. Определить скорость лыжника в конце спуска.Груз D массой m, получив в точке А начальную скорость V0, движется в изогнутой трубе ABC, расположенной в вертикальной плоскости; участки трубы один горизонтальный, другой вертикальный. На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рис.1.1) и сила сопротивления среды R, зависящая от скорости V груза (направлена против движения), трением груза о трубу на участке АВ пренебречь. В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действуют сила трения (коэффициент трения груза о трубу f) и переменная сила F, проекция которой F_x на ось Bх задана. Считая груз материальной точкой и зная время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС.
Вариант 3.6

Задача №4
Применение теоремы об изменении кинетической энергии

Груз 1 (массой m1) поднимается при помощи троса (рис. 1), перекинутого через блок 3 (радиуса r и масса m3), который приводится во вращение электромотором, создающим постоянный вращающий момент МО. Определить угловую скорость вращения барабана 2 в тот момент, когда груз 1 поднимется на высоту h. Барабан 2 имеет форму цилиндра, а блок 3 форму диска. В начальный момент времени система находилась в покое. Массой троса пренебречь.
Вариант 2
Дано: m1 = 9 кг; m2 = 14 кг; m = 0,6 кг; R = 0,2 м; r = 0,1 м; МО = 350 Н∙м; h = 0,6 м.

Найти: V3 с помощью общего уравнения динамики
Найдите угловое ускорение тела (1)
Исследование колебаний механической системы с одной степенью свободы (Курсовая работа)
Дана механическая система с одной степенью свободы, представляющая собой совокупность абсолютно твердых тел, связанных друг с другом посредством невесомых нерастяжимых нитей, параллельных соответствующим плоскостям. Система снабжена внешней упругой связью с коэффициентом жесткости c. На первое тело системы действует сила сопротивления R = -μ·V в возмущающая гармоническая сила F(t)=F0sin(pt). Трением качения и скольжения пренебрегаем. Качение катков происходит без скольжения, проскальзывание нитей на блоках отсутствует. С применением основных теорем динамики системы и аналитических методов теоретической механики определить закон движения первого тела и реакции внешних и внутренних связей. Произвести численный анализ полученного решения с использованием компьютера.

Практическое задание 5
«Движение материальной точки под действием постоянных сил»
Вариант 54(24).
Варианты 21…25 (схема 5). Тело движется из точки А по участку АВ (длиной l) наклонной плоскости, составляющей угол α с горизонтом. Его начальная скорость VA. Коэффициент трения скольжения равен f. Через τ секунд тело в точке В со скоростью VB покидает наклонную плоскость и падает на горизонтальную плоскость в точку С со скоростью VC при этом оно находится в воздухе Т секунд. При решении задачи принять тело за материальную точку и не учитывать сопротивление воздуха.
Дано: VA=0, d=12м, l=10м, α=30°, f=0.2.
Определить: τ, h-?

Задание Д.10. Применение теоремы об изменении кинетической энергии к изучению движения механической системы
Механическая система под действием сил тяжести приходит в движение из состояния покоя. Начальное положение системы показано на рис. 1. Учитывая сопротивление качению тела 3, катящегося без скольжения, пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела 1 в тот момент, когда пройденный им путь станет равным s.
Блоки в катки, для которых радиусы инерции в таблице не указаны, считать сплошными однородными цилиндрами.
Наклонные участки нитей параллельны соответствующим наклонным плоскостям.
Вариант 7
Дано: m1 = m; m2 = 2m; m3 = 2m; R2 = 16 см; R3 = 25 см; i2х = 14 см; α = 30°; δ = 0,20; s = 2 м.