Артикул: 1002878

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название или условие:
Для приведённой ниже схемы механической системы, используя принцип Даламбера, определить ускорение груза 1, а также усилия в грузовых тросах и реакции внешних связей, соответствующие заданной силе F . Исходные данные: массы груза m1 и барабана 2 m2 , радиусы барабана 2 R2 и r2 и радиус инерции ρ2 , коэффициент трения скольжения груза 1 f. Каток 3 считать невесомым. Трением качения, а также трением на осях барабана пренебречь.

Описание:
Применение принципа Даламбера для исследования движения механической системы. Подробное пошаговое решение с чертежами.

Поисковые тэги: Принцип Даламбера

Изображение предварительного просмотра:

Для приведённой ниже схемы механической системы, используя принцип Даламбера, определить ускорение груза 1, а также усилия в грузовых тросах и реакции внешних связей, соответствующие заданной силе F . Исходные данные: массы груза m<sub>1</sub> и барабана 2 m<sub>2</sub> , радиусы барабана 2 R<sub>2</sub> и r<sub>2</sub> и радиус инерции ρ<sub>2</sub> , коэффициент трения скольжения груза 1 f. Каток 3 считать невесомым. Трением качения, а также трением на осях барабана пренебречь.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Динамика точки
Тело массой m, прикрепленное пружиной к неподвижной точке, движется по гладкой плоскости, образующей угол α с горизонтом, под действием возмущающей силы F = F0sin(pt) В начальный момент тело находилось в покое в положении равновесия. Найти
1) Частоту и период свободных колебаний
2) Уравнения движения тела
Вариант 4

Практическое задание 6
«Теорема об изменении кинетической энергии механической системы»
Механизм, состоящий из груза А, блока В (больший радиус – R, меньший – r, радиус инерции относительно центральной оси – i) и однородного круглого цилиндра С радиусом RC, установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Качение цилиндра (блока) происходит без проскальзывания. Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела, параллельны плоскостям. Какую скорость развил груз А, переместившись на расстояние SA?
Вариант 14 (Схема 14)
Дано: mA=9кг, mB=3кг, mC=12кг, α=30°, β=45°, RC=18см=0.18м, g≈9.8м/с2, R=36см=0.48м, r=24см=0.24м, i=32см=0.32м, SA=1м.
Определить: VA(SA)-?

Лыжник массой m = 70 кг опускается без начальной скорости по склону, составляющему угол α = 30° с горизонтом, не отталкиваясь палками. Длина спуска l = 100 м, коэффициент трения скольжения лыж о снег f = 0.1. Сила сопротивления воздуха пропорциональна квадрату скорости R = 0.4v2. Определить скорость лыжника в конце спуска.Задание Д.10. Применение теоремы об изменении кинетической энергии к изучению движения механической системы
Механическая система под действием сил тяжести приходит в движение из состояния покоя. Начальное положение системы показано на рис. 1. Учитывая сопротивление качению тела 3, катящегося без скольжения, пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела 1 в тот момент, когда пройденный им путь станет равным s.
Блоки в катки, для которых радиусы инерции в таблице не указаны, считать сплошными однородными цилиндрами.
Наклонные участки нитей параллельны соответствующим наклонным плоскостям.
Вариант 7
Дано: m1 = m; m2 = 2m; m3 = 2m; R2 = 16 см; R3 = 25 см; i2х = 14 см; α = 30°; δ = 0,20; s = 2 м.

Определить скорость V3
Задача 3.1
Груз массой m, получив в точке А начальную скорость V0, движется по гладкой горизонтальной поверхности под действием постоянной силы Q. На груз действует сила сопротивления R, зависящая от скорости груза. Определить скорость груза в момент времени t1.
Вариант 5
Дано: R=µ*V=0.4*V(H), m=4кг, V0=20м/с, µ=0.4H*c/м, t1=5c, g≈9.81м/c2, Q=4H.
Определить: V1-?
Задание Д1. Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил
Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом α к горизонту и имеющего длину l (рис. 9), со скоростью vA. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется τ с; в точке В со скоростью vB он покидает трамплин. Через Т с лыжник приземляется со скоростью vC в точке С горы, составляющей угол β с горизонтом. При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха.
Вариант 7
Числовые данные: α = 15°; f = 0,1; vA = 16 м/с; l = 5 м; β = 45°. Определить vВ и Т.

Задача Д1. Интегрирование ДУ движения материальной точки, находящейся под действием постоянных сил.
Варианты 6-0 (рис.20 приложения, схема 2 и данные в таблице 32). Лыжник подходит к точке A участка трамплина AB, наклонённого под углом α к горизонту и имеющего длину l, со скоростью vA. Коэффициент трения скольжения лыж на участке AB равен f. Лыжник от A до B движется τ с; в точке B он покидает трамплин со скоростью vB. Через T с лыжник приземляется со скоростью vC в точке C горы, составляющей угол β с горизонтом.
При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха
Вариант 0

Механическая система под действием заданных сил приходит в движение из состояния покоя. Пренебрегая массами нитей, предполагаемых нерастяжимыми, определить скорость и ускорение груза А в тот момент, когда пройденный им путь станет равным SA.
Вариант 3.6

Практическое задание 7
«Общее уравнение динамики»
Номер варианта задается преподавателем и соответствует номеру на рисунке. Для заданной механической системы определить ускорение груза. Массами нитей пренебречь. Трение качения и силы сопротивления в подшипниках не учитывать. Система движется из состояния покоя.
Варианты механических систем показаны на рисунке, необходимые для решения данные приведены в таблице.
Блоки и катки, для которых радиусы инерции в таблице указаны, считать сплошными однородными цилиндрами.
Вариант 20 (Схема 20)
Дано: G1=4*G, G2=0.2*G, G3=0.1*G, G4=3*G, R2=1.8*r, r2=1.5*r, i2=1.6*r, i3=r*√2, R3=2*r, r3=r, g≈10м/с2.
Найти: a1, T1-?