Артикул: 1002878

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название или условие:
Для приведённой ниже схемы механической системы, используя принцип Даламбера, определить ускорение груза 1, а также усилия в грузовых тросах и реакции внешних связей, соответствующие заданной силе F . Исходные данные: массы груза m1 и барабана 2 m2 , радиусы барабана 2 R2 и r2 и радиус инерции ρ2 , коэффициент трения скольжения груза 1 f. Каток 3 считать невесомым. Трением качения, а также трением на осях барабана пренебречь.

Описание:
Применение принципа Даламбера для исследования движения механической системы. Подробное пошаговое решение с чертежами.

Поисковые тэги: Принцип Даламбера

Изображение предварительного просмотра:

Для приведённой ниже схемы механической системы, используя принцип Даламбера, определить ускорение груза 1, а также усилия в грузовых тросах и реакции внешних связей, соответствующие заданной силе F . Исходные данные: массы груза m<sub>1</sub> и барабана 2 m<sub>2</sub> , радиусы барабана 2 R<sub>2</sub> и r<sub>2</sub> и радиус инерции ρ<sub>2</sub> , коэффициент трения скольжения груза 1 f. Каток 3 считать невесомым. Трением качения, а также трением на осях барабана пренебречь.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача Д8
Вертикальный вал АК, вращающийся с постоянной угловой скоростью ω = 10 c-1, закреплен подпятником в точке А и цилиндрическим подшипником в точке, указанной в табл. Д8 в столбце 2 (AB = BD = DE = EK = a). К валу жестко прикреплены тонкий однородный ломаный стержень массой m = 10 кг, состоящий из частей 1 и 2 (размеры частей стержня показаны на рисунках, где b = 0.1 м, а их массы m1 и m2 пропорциональны длинам), и невесомый стержень длиной l = 4b с точечной массой m3 = 3 кг на конце; оба стержня лежат в одной плоскости. Точки крепления стержней указаны в таблице в столбцах 3 и 4, а углы α, β, γ, φ даны в столбцах 5-8.
Пренебрегая весом вала, определить реакции подпятника и подшипника. При подсчетах принять a = 0.6 м.
Вариант 75

Задача Д1
Автомобиль М массой m имея в точке А начальную скорость V0, движется по трассе АВС и мосту СД. Участки АВ и ВС наклонные.
На участке АВ на автомобиль действует постоянная сила трения Fтр, а также постоянная сила F. В точках В и С автомобиль не изменяет величину своей скорости. Мост образует дугу окружности радиуса R. Максимальный прогиб моста h.
Считая автомобиль материальной точкой, определить:
1. Скорости автомобиля в точках В,С трассы и точке К моста
2. Силу давления автомобиля на мост, когда он находится в точке К
3. Установить, находится или нет автомобиль в точке К в отрыве от моста.
Вариант 44

Задача Д1
Груз D массой m, получив в точке А начальную скорость υ0, движется в изогнутой трубе ABC, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис. Д1.0 – Д1.9, табл. Д1). На участке АВ, на груз кроме силы тяжести, действуют постоянная сила Q (ее направление показано на рисунках) и сила сопротивления среды R, зависящая от скорости v груза (направлена против движения); трением груза о трубу на участке АВ пренебречь.
В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него, кроме силы тяжести, действуют сила трения (коэффициент трения груза о трубу f = 0,2) и переменная сила F, проекция которой Fx на ось х задана в таблице. Считая груз материальной точкой и зная расстояние АВ = l или время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС, т. е. x = f(t), где x = BD
Вариант 75

Задача Д1
Автомобиль М массой m имея в точке А начальную скорость V0, движется по трассе АВС и мосту СД. Участки АВ и ВС наклонные.
На участке АВ на автомобиль действует постоянная сила трения Fтр, а также постоянная сила F. В точках В и С автомобиль не изменяет величину своей скорости. Мост образует дугу окружности радиуса R. Максимальный прогиб моста h.
Считая автомобиль материальной точкой, определить:
1. Скорости автомобиля в точках В,С трассы и точке К моста
2. Силу давления автомобиля на мост, когда он находится в точке К
3. Установить, находится или нет автомобиль в точке К в отрыве от моста.
Вариант 33

ЗАДАНИЕ Д2
Механическая система состоит из прямоугольной вертикальной плиты 1 массой m1 = 24 кг и груза D массой m2 = 8 кг; плита или движется вдоль горизонтальных направляющих, или вращается вокруг вертикальной оси z, лежащей в плоскости плиты. В момент времени t0 груз начианет двигаться под действием внутренних сил по имеющемуся на плите желобу; закон его движения s=AD=F(t) задан в таблице. Плита имеет в момент t0 = 0 скорость u0 = 0.
Считая груз материальной точкой и пренебрегая всеми сопротивлениями, определить указанное в столбцах 4 и 9 таблицы.
Вариант 34

Д3.
Шарик, принимаемый за материальную точку, движется из положения А внутри трубки, ось которой расположена в вертикальной плоскости(рис.1.3). Найти максимальное сжатие пружины hmax.
Вариант 1.
Дано: m=0.1кг, VA=12м/с, τ=0.2c, R=0.5м, f=0.05, c=0.9H/см=90H/м, α=30°, β=75°.
Определить: hmax-?

Задача Д1
Динамика точки

Твердое тело, размерами которого в данной задаче можно пренебречь, движется из точки А по участку АВ (длиной l) по наклонной поверхности, составляющей угол α с горизонтом, в течение τ секунд. Его начальная скорость VA. Коэффициент трения скольжения тела по плоскости равен f.
В точке В тело покидает плоскость со скоростью VB и попадает со скоростью VB в точку С плоскости BD, наклоненной под углом β к горизонту, находясь в воздухе Т секунд. Сопротивление воздуха не учитывать.
Вариант 1
Дано: α = 30°; VA= 1 м/с ; f = 0.3; l=10 м; β= 60°;
Определить время τ и высоту h

Задание Д-3
Механическая система, изображенная на рис. Д-3, состоит из нескольких тел, соединенных нерастяжимыми и не провисающими нитями; при этом тела системы совершают либо поступательное движение (грузы), либо вращаются вокруг неподвижной горизонтальной оси (однородные диски либо соосные блоки, жестко насаженные на единую ось), либо совершают плоскопараллельное движение (однородные диски либо соосные блоки).
При выполнении задания необходимо:
1. Составить математическую модель для определения движений всех тел механической системы, а так же реакций внешних и внутренних связей в виде замкнутой системы дифференциальных и алгебраических уравнений.
2. Для указанного преподавателем тела получить дифференциальное уравнение движения.
3. Для указанного преподавателем тела получить дифференциальное уравнение движения, используя теорему об изменении кинетической энергии.
4. Решить полученное в пунктах 2 и 3 дифференциальное уравнение при заданных начальных условиях.
5. Получить математическую модель для анализа условий равновесия рассматриваемой механической системы.  

Задача Д2
4.2.1. Условия задачи. Механическая система (рис. 4.3) включает два ступенчатых шкива 1,2, обмотанных нитями, грузы 3, 4, 5, 6, прикрепленные к этим нитям, и невесомый блок, предназначенный для изменения направления нити. Система движется в вертикальной плоскости под действием сил тяжести грузов и пары сил с моментом М, приложенной к одному из шкивов.
Радиусы внешних ступеней шкивов R1 и R2, веса шкивов Р1, Р2 и грузов Р3, Р4, Р5, Р6, а также величина момента М для конкретных вариантов задачи приведены в табл. Д2. Радиусы внутренних ступеней шкивов ri = 0,5Ri (i = 1,2), радиусы инерции шкивов относительно осей вращения ρi = 0,6Ri.
Пренебрегая силами трения и считая нити нерастяжимыми, определить:
- линейные ускорения грузов;
- угловые ускорения шкивов;
- силы натяжения нитей на участках между грузами и шкивами.
Провести проверку и оценить погрешность решения с помощью уравнения движения шкива, к которому приложен момент М.
Вариант 789

Задача 25
Груз массой m, двигаясь по наклонной плоскости, под действием силы F проходит путь S за время t. Считая движение груза равноускоренным с начальной скоростью V0 = 0 м/с, определить величину силы F, если коэффициент трения равен f.