Артикул: 1165996

Раздел:Технические дисциплины (109493 шт.) >
  Теоретическая механика (теормех, термех) (2303 шт.) >
  Динамика (394 шт.)

Название или условие:
Задача Д2
4.2.1. Условия задачи. Механическая система (рис. 4.3) включает два ступенчатых шкива 1,2, обмотанных нитями, грузы 3, 4, 5, 6, прикрепленные к этим нитям, и невесомый блок, предназначенный для изменения направления нити. Система движется в вертикальной плоскости под действием сил тяжести грузов и пары сил с моментом М, приложенной к одному из шкивов.
Радиусы внешних ступеней шкивов R1 и R2, веса шкивов Р1, Р2 и грузов Р3, Р4, Р5, Р6, а также величина момента М для конкретных вариантов задачи приведены в табл. Д2. Радиусы внутренних ступеней шкивов ri = 0,5Ri (i = 1,2), радиусы инерции шкивов относительно осей вращения ρi = 0,6Ri.
Пренебрегая силами трения и считая нити нерастяжимыми, определить:
- линейные ускорения грузов;
- угловые ускорения шкивов;
- силы натяжения нитей на участках между грузами и шкивами.
Провести проверку и оценить погрешность решения с помощью уравнения движения шкива, к которому приложен момент М.
Вариант 789

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задача Д2</b> <br /> 4.2.1. Условия задачи. Механическая система (рис. 4.3) включает два ступенчатых шкива 1,2, обмотанных нитями, грузы 3, 4, 5, 6, прикрепленные к этим нитям, и невесомый блок, предназначенный для изменения направления нити. Система движется в вертикальной плоскости под действием сил тяжести грузов и пары сил с моментом М, приложенной к одному из шкивов. <br />Радиусы внешних ступеней шкивов R1 и R2, веса шкивов Р1, Р2 и грузов Р3, Р4, Р5, Р6, а также величина момента М для конкретных вариантов задачи приведены в табл. Д2. Радиусы внутренних ступеней шкивов ri = 0,5Ri (i = 1,2), радиусы инерции шкивов относительно осей вращения ρi = 0,6Ri. <br />Пренебрегая силами трения и считая нити нерастяжимыми, определить:<br />- линейные ускорения грузов;<br />- угловые ускорения шкивов;<br />- силы натяжения нитей на участках между грузами и шкивами. <br />Провести проверку и оценить погрешность решения с помощью уравнения движения шкива, к которому приложен момент М.<br /><b>Вариант 789</b>

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти импульс равнодействующей всех сил, действующих на снаряд за время, когда снаряд из начального положения O переходит в наивысшее положение M.
Дано: m=100кг, α0=60°, V0=500м/c, V1=200м/c.
Задание Д-3
Механическая система, изображенная на рис. Д-3, состоит из нескольких тел, соединенных нерастяжимыми и не провисающими нитями; при этом тела системы совершают либо поступательное движение (грузы), либо вращаются вокруг неподвижной горизонтальной оси (однородные диски либо соосные блоки, жестко насаженные на единую ось), либо совершают плоскопараллельное движение (однородные диски либо соосные блоки).
При выполнении задания необходимо:
1. Составить математическую модель для определения движений всех тел механической системы, а так же реакций внешних и внутренних связей в виде замкнутой системы дифференциальных и алгебраических уравнений.
2. Для указанного преподавателем тела получить дифференциальное уравнение движения.
3. Для указанного преподавателем тела получить дифференциальное уравнение движения, используя теорему об изменении кинетической энергии.
4. Решить полученное в пунктах 2 и 3 дифференциальное уравнение при заданных начальных условиях.
5. Получить математическую модель для анализа условий равновесия рассматриваемой механической системы.  

По горизонтальному участку пути движутся в одном направлении два вагона, массы которых m1, m2 и скорости V1, V2. Второй вагон догоняет первый и сцепляется с ним. Пренебрегая сопротивлением движению, определить скорость V3 вагонов после сцепления.
Дано: m1=30000кг, m2=20000кг, V1=1м/c, V2=2м/c.
По борту стоящего свободно на воде катера массы m1 и длины S с носа на корму переходит человек массы m2. Пренебрегая сопротивлением воды, определить направление и величину перемещения катера L.
Дано: S=5м, m1=600кг, m2=80кг.
Задача Д6
Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней R3 = 0,3 м, r3 = 0,1 м и радиусом инерции относительно оси вращения ρ3 = 0,2м, блока 4 радиуса R4 = 0,2 м и катка (или подвижного блока) 5 (рис. Д4.0 – Д4.9, табл. Д4); тело 5 считать сплошным однородным цилиндром, а массу блока 4 – равномерно распределенной по ободу. Коэффициент трения грузов о плоскость f = 0,1. Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными на шкив 3 (или на шкив и каток); участки нитей параллельны соответствующим плоскостям. К одному из тел прикреплена пружина с коэффициентом жесткости с.
Под действием силы F = f(s), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках).
Определить значение искомой величины в тот момент времени, когда перемещение s станет равным s1 = 0,2 м. Искомая величина указана в столбце «Найти» таблицы, где обозначено: υ1, υ2, υС5 – скорости грузов 1, 2 и центра масс тела 5 соответственно, ω3 и ω4 – угловые скорости тел 3 и 4.
Все катки, включая и катки, обмотанные нитями (как, например, каток 5 на рис. 1), катятся по плоскостям без скольжения.
Вариант 75

На однородную призму A, лежащую на горизонтальной плоскости, положена однородная призма B; поперечные сечения призм прямоугольные треугольники, масса призмы A втрое больше массы призмы B. Предполагая, что призмы и горизонтальная плоскость идеально гладкие, определить длину L , на которую передвинется призма A, когда призма B , спускаясь по A, дойдет до горизонтальной плоскости.
Дано: a=18см, b=10см, mA=3*mB.
Материальная точка массой m=2 кг движется по горизонтальной оси Ох под действием силы Fx=5cos0.5t. Определить скорость точки в момент времени t=4 с, если при t0 = 0 скорость v0 = 10 м/с.По горизонтальной платформе, движущейся по инерции со скоростью V_0 перемещается тележка с постоянной относительной скоростью u_0. В некоторый момент времени тележка была заторможена. Определить общую скорость V платформы с тележкой после ее остановки, если масса платформы M, а масса тележки m.
Дано: M=100кг, m=20кг, V0=1м/c, u0=3м/c.
Задание Д-2
Тело H массой m1 вращается вокруг вертикальной оси z с постоянной угловой скоростью ω0; при этом в точке К желоба АВ тела Н на расстоянии АК от точки А, отсчитываемом вдоль желоба, находится материальная точка М массой m2. В некоторый момент времени (t=0) на систему начинает действовать пара сил с моментом Mz=Mz(t). При t=τ действие сил прекращается и начинается второй этап движения, в течение которого точка М начинает относительное движение из точки К вдоль желоба АВ (в направлении точке В) по закону МК=s(t1), где t1 –время движения на втором этапе. Определить угловую скорость ωт тела Н при t1=T. Тело Н рассматривать как однородную пластину форма которой показана на рис Д-2 либо как однородный стержень.
Дано: m1=80 кг; m2=20 кг; ω0=0; R=2 м; a=1,2 м; s=s(t)=(πa/4)∙t1; T=3с; M=240√t; AK=πa/4; τ=4с.

Космический корабль массы m при стыковке подходит к орбитальной станции массы M с относительной скоростью u(рис.9,а). На сколько увеличится или уменьшится скорость станции сразу после стыковки?
Дано: m=4000кг, M=12000кг, u=0.4м/c, V0=0.