Артикул: 1167016

Раздел:Технические дисциплины (110513 шт.) >
  Теоретическая механика (теормех, термех) (2372 шт.) >
  Динамика (407 шт.)

Название или условие:
Курсовая работа по теоретической механике
ЗАДАНИЕ 39
Система состоит из однородного стержня OA длины l и массы m1 и невесомой платформы ED, несущей ползун B массы m2, который перемещается вдоль нее без трения под действием растяжения-сжатия двух одинаковых пружин жесткости с2. К ползуну приложена постоянная по величине вертикальная сила P. Платформа вместе со стержнем образует твердое тело, которое может поворачиваться вокруг опорного шарнира, имеющего спиральную пружину жесткости c1 (рис. 39).

Описание:
1. Ввести подвижную систему координат, связанную со стержнем ОА. Считая φ(t) и s(t) заданными функциями времени, вычислить абсолютную скорость и абсолютное ускорение ползуна А. Изобразить на чертеже составляющие Vабс и ωабс.
2. Считая φ(t) заданной функцией времени, составить дифференциальное уравнение движения ползуна А относительно подвижной системы координат, введенной в п. 1.
3. Считая функции φ(t) и s(t) известными, найти проекции Rx и Ry реакции шарнира О. Воспользоваться теоремой об изменении количества движения. Показать, что
Rx=[(m1/2)+m2 ]l(φ ̈ cos⁡φ-(φ2 sin⁡φ ) ̇ )+m2 [(s ̈-s(φ2 ) ̇ ) cos⁡φ-(2s ̇φ ̇+sφ ̈ ) sin⁡φ ];
Ry=-[(m1/2)+m2 ]l(φ ̈ sin⁡φ+(φ2 ) ̇ cos⁡φ )-m2 [(s ̈-s(φ2 ) ̇ ) sin⁡φ+(2s ̇φ ̇+sφ ̈ ) cos⁡φ ]+(m1+m2 )g+P.
4. Полагая, что ползун закреплен в точке А и P = 0, помощью теоремы об изменении кинетического момента составить дифференциальное уравнение вращательного движения системы.
5. Для условия п. 4 найти угловую скорость ω0, которую надо сообщить стержню в вертикальном положении, чтобы он смог отклониться на угол φ_0. Применить теорему об изменении кинетической энергии.
6. Считая φ(t) и s(t) заданными функциями времени, выписать силы инерции ползуна, а также главный вектор и главный момент относительно точки О сил инерции стержня ОА.
7. Применяя принцип Даламбера, найти величину N реакции, действующей на ползун со стороны платформы. Показать, что

N=(P+m_2 g)cos⁡φ-m2(sφ ̈+2s ̇φ ̇+lφ ̇^2)

8. Составить дифференциальные уравнения движения системы, исходя из общего уравнения аналитической динамики и приняв за обобщенные координаты φ и s.
9. Составить выражения для кинетической и потенциальной энергии системы, вычислить обобщенные силы.
10. Используя уравнения Лагранжа второго рода, показать, что дифференциальные уравнения движения системы имеют вид
(m1/3) l2 φ ̈+m2 [2ss ̇φ ̇+(l2+s2 ) φ ̈+ls ̈ ]=(m1/2)gl sin⁡φ+(P+m2 g)(l sin⁡φ+s cos⁡φ )-c1φ;
m2 (s ̈+lφ ̈-s(φ2 ) ̇ )=(P+m2 g) sin⁡φ-2c2s.
11. Для условия п. 4 определить интервал жесткости спиральной пружины, для которого верхнее вертикальное положение равновесия системы будет устойчивым. Составить уравнение малых колебаний системы в окрестности устойчивого положения равновесия, найти период малых колебаний.

Подробное решение - скан рукописи

Изображение предварительного просмотра:

Курсовая работа по теоретической механике<br /><b>ЗАДАНИЕ 39</b> <br />Система состоит из однородного стержня OA длины l и массы m1 и невесомой платформы ED, несущей ползун B массы m2, который перемещается вдоль нее без трения под действием растяжения-сжатия двух одинаковых пружин жесткости с2. К ползуну приложена постоянная по величине вертикальная сила P. Платформа вместе со стержнем образует твердое тело, которое может поворачиваться вокруг опорного шарнира, имеющего спиральную пружину жесткости c1 (рис. 39).

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

ЗАДАНИЕ Д2
Механическая система состоит из прямоугольной вертикальной плиты 1 массой m1 = 24 кг и груза D массой m2 = 8 кг; плита или движется вдоль горизонтальных направляющих, или вращается вокруг вертикальной оси z, лежащей в плоскости плиты. В момент времени t0 груз начианет двигаться под действием внутренних сил по имеющемуся на плите желобу; закон его движения s=AD=F(t) задан в таблице. Плита имеет в момент t0 = 0 скорость u0 = 0.
Считая груз материальной точкой и пренебрегая всеми сопротивлениями, определить указанное в столбцах 4 и 9 таблицы.
Вариант 34

Общие теоремы динамики материальной точки
Шарик массы т движется из положения А внутри изогнутой трубки, расположенной в вертикальной плоскости. Шарик, пройдя путь 1, отделяется от пружины. В точке В шарик, не меняя значения своей скорости, переходит на участок ВС, где на него дополнительно действует переменная сила F, направление которой указано на рисунке. Пользуясь общими теоремами динамики точки, определить скорость шарика в положениях В и С. В задании приняты следующие обозначения: 1 - начальная скорость шарика, АВ - длина участка, 7 - время движения на участке ВС, f - коэффициент трения скольжения шарика по стенке трубки, с коэффициент жесткости пружины.
Вариант 9

Найдите угловое ускорение тела (1)
Задача Д1
Динамика точки

Твердое тело, размерами которого в данной задаче можно пренебречь, движется из точки А по участку АВ (длиной l) по наклонной поверхности, составляющей угол α с горизонтом, в течение τ секунд. Его начальная скорость VA. Коэффициент трения скольжения тела по плоскости равен f.
В точке В тело покидает плоскость со скоростью VB и попадает со скоростью VB в точку С плоскости BD, наклоненной под углом β к горизонту, находясь в воздухе Т секунд. Сопротивление воздуха не учитывать.
Вариант 1
Дано: α = 30°; VA= 1 м/с ; f = 0.3; l=10 м; β= 60°;
Определить время τ и высоту h

Задача Д8
Вертикальный вал АК, вращающийся с постоянной угловой скоростью ω = 10 c-1, закреплен подпятником в точке А и цилиндрическим подшипником в точке, указанной в табл. Д8 в столбце 2 (AB = BD = DE = EK = a). К валу жестко прикреплены тонкий однородный ломаный стержень массой m = 10 кг, состоящий из частей 1 и 2 (размеры частей стержня показаны на рисунках, где b = 0.1 м, а их массы m1 и m2 пропорциональны длинам), и невесомый стержень длиной l = 4b с точечной массой m3 = 3 кг на конце; оба стержня лежат в одной плоскости. Точки крепления стержней указаны в таблице в столбцах 3 и 4, а углы α, β, γ, φ даны в столбцах 5-8.
Пренебрегая весом вала, определить реакции подпятника и подшипника. При подсчетах принять a = 0.6 м.
Вариант 75

Задача Д1
Автомобиль М массой m имея в точке А начальную скорость V0, движется по трассе АВС и мосту СД. Участки АВ и ВС наклонные.
На участке АВ на автомобиль действует постоянная сила трения Fтр, а также постоянная сила F. В точках В и С автомобиль не изменяет величину своей скорости. Мост образует дугу окружности радиуса R. Максимальный прогиб моста h.
Считая автомобиль материальной точкой, определить:
1. Скорости автомобиля в точках В,С трассы и точке К моста
2. Силу давления автомобиля на мост, когда он находится в точке К
3. Установить, находится или нет автомобиль в точке К в отрыве от моста.
Вариант 33

Задача №4
Движение самолета по взлетно-посадочной полосе при взлете определяется взлетной массой m, тягой двигателей P, сопротивлением движению |Fсоп|=6.1 кН и может характеризоваться параметрами: ускорение a, время разбега tр = 35.2 c, длина разбега L = 1050 м, количество движения в момент отрыва Q = 2950·103 (кг·м)/с.
Считая силы P и Fсоп при движении самолета постоянными, определить остальные параметры.

Задача Д1
Груз D массой m=4.8кг, получив в точке А начальную скорость V0=10м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=10Н). и сила сопротивления среды R, зависящая от скорости v груза, R=0.2·V2 (направлена против движения).
В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила А, проекция которой на ось X: Fx =4cos(2t).
Считая груз материальной точкой и зная расстояние АВ=l=4м движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.
Вариант 88

Динамика точки. Вариант 8
На тело массой m, движущееся по горизонтальной гладкой поверхности вдоль оси x, действует сила, проекция которой равна Fx = −0,5x. В начальный момент x0 = 0, v0x = 10 м⁄с. Определить максимальное значение координаты x тела
Задание Д-3
Механическая система, изображенная на рис. Д-3, состоит из нескольких тел, соединенных нерастяжимыми и не провисающими нитями; при этом тела системы совершают либо поступательное движение (грузы), либо вращаются вокруг неподвижной горизонтальной оси (однородные диски либо соосные блоки, жестко насаженные на единую ось), либо совершают плоскопараллельное движение (однородные диски либо соосные блоки).
При выполнении задания необходимо:
1. Составить математическую модель для определения движений всех тел механической системы, а так же реакций внешних и внутренних связей в виде замкнутой системы дифференциальных и алгебраических уравнений.
2. Для указанного преподавателем тела получить дифференциальное уравнение движения.
3. Для указанного преподавателем тела получить дифференциальное уравнение движения, используя теорему об изменении кинетической энергии.
4. Решить полученное в пунктах 2 и 3 дифференциальное уравнение при заданных начальных условиях.
5. Получить математическую модель для анализа условий равновесия рассматриваемой механической системы.