Артикул: 1167016
Раздел:Технические дисциплины (110513 шт.) >
Теоретическая механика (теормех, термех) (2372 шт.) >
Динамика (407 шт.) Название или условие:Курсовая работа по теоретической механике
ЗАДАНИЕ 39 Система состоит из однородного стержня OA длины l и массы m1 и невесомой платформы ED, несущей ползун B массы m2, который перемещается вдоль нее без трения под действием растяжения-сжатия двух одинаковых пружин жесткости с2. К ползуну приложена постоянная по величине вертикальная сила P. Платформа вместе со стержнем образует твердое тело, которое может поворачиваться вокруг опорного шарнира, имеющего спиральную пружину жесткости c1 (рис. 39).
Описание: 1. Ввести подвижную систему координат, связанную со стержнем ОА. Считая φ(t) и s(t) заданными функциями времени, вычислить абсолютную скорость и абсолютное ускорение ползуна А. Изобразить на чертеже составляющие Vабс и ωабс.
2. Считая φ(t) заданной функцией времени, составить дифференциальное уравнение движения ползуна А относительно подвижной системы координат, введенной в п. 1.
3. Считая функции φ(t) и s(t) известными, найти проекции Rx и Ry реакции шарнира О. Воспользоваться теоремой об изменении количества движения. Показать, что
Rx=[(m1/2)+m2 ]l(φ ̈ cosφ-(φ
2 sinφ ) ̇ )+m2 [(s ̈-s(φ
2 ) ̇ ) cosφ-(2s ̇φ ̇+sφ ̈ ) sinφ ];
Ry=-[(m1/2)+m2 ]l(φ ̈ sinφ+(φ
2 ) ̇ cosφ )-m2 [(s ̈-s(φ
2 ) ̇ ) sinφ+(2s ̇φ ̇+sφ ̈ ) cosφ ]+(m1+m2 )g+P.
4. Полагая, что ползун закреплен в точке А и P = 0, помощью теоремы об изменении кинетического момента составить дифференциальное уравнение вращательного движения системы.
5. Для условия п. 4 найти угловую скорость ω0, которую надо сообщить стержню в вертикальном положении, чтобы он смог отклониться на угол φ_0. Применить теорему об изменении кинетической энергии.
6. Считая φ(t) и s(t) заданными функциями времени, выписать силы инерции ползуна, а также главный вектор и главный момент относительно точки О сил инерции стержня ОА.
7. Применяя принцип Даламбера, найти величину N реакции, действующей на ползун со стороны платформы. Показать, что
N=(P+m_2 g)cosφ-m2(sφ ̈+2s ̇φ ̇+lφ ̇^2)
8. Составить дифференциальные уравнения движения системы, исходя из общего уравнения аналитической динамики и приняв за обобщенные координаты φ и s.
9. Составить выражения для кинетической и потенциальной энергии системы, вычислить обобщенные силы.
10. Используя уравнения Лагранжа второго рода, показать, что дифференциальные уравнения движения системы имеют вид
(m1/3) l
2 φ ̈+m2 [2ss ̇φ ̇+(l
2+s
2 ) φ ̈+ls ̈ ]=(m1/2)gl sinφ+(P+m2 g)(l sinφ+s cosφ )-c1φ;
m2 (s ̈+lφ ̈-s(φ
2 ) ̇ )=(P+m2 g) sinφ-2c2s.
11. Для условия п. 4 определить интервал жесткости спиральной пружины, для которого верхнее вертикальное положение равновесия системы будет устойчивым. Составить уравнение малых колебаний системы в окрестности устойчивого положения равновесия, найти период малых колебаний.
Подробное решение - скан рукописи
Изображение предварительного просмотра:
Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к
администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.