Артикул: 1167146

Раздел:Технические дисциплины (110643 шт.) >
  Теоретическая механика (теормех, термех) (2383 шт.) >
  Динамика (408 шт.)

Название или условие:
Задание Д-3
Механическая система, изображенная на рис. Д-3, состоит из нескольких тел, соединенных нерастяжимыми и не провисающими нитями; при этом тела системы совершают либо поступательное движение (грузы), либо вращаются вокруг неподвижной горизонтальной оси (однородные диски либо соосные блоки, жестко насаженные на единую ось), либо совершают плоскопараллельное движение (однородные диски либо соосные блоки).
При выполнении задания необходимо:
1. Составить математическую модель для определения движений всех тел механической системы, а так же реакций внешних и внутренних связей в виде замкнутой системы дифференциальных и алгебраических уравнений.
2. Для указанного преподавателем тела получить дифференциальное уравнение движения.
3. Для указанного преподавателем тела получить дифференциальное уравнение движения, используя теорему об изменении кинетической энергии.
4. Решить полученное в пунктах 2 и 3 дифференциальное уравнение при заданных начальных условиях.
5. Получить математическую модель для анализа условий равновесия рассматриваемой механической системы.  

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задание Д-3</b> <br />Механическая система, изображенная на рис. Д-3, состоит из нескольких тел, соединенных нерастяжимыми и не провисающими нитями; при этом тела системы совершают либо поступательное движение (грузы), либо вращаются вокруг неподвижной горизонтальной оси (однородные диски либо соосные блоки, жестко насаженные на единую ось), либо совершают плоскопараллельное движение (однородные диски либо соосные блоки). <br />При выполнении задания необходимо: <br />1.	Составить математическую модель для определения движений всех тел механической системы, а так же реакций внешних и внутренних связей в виде замкнутой системы дифференциальных и алгебраических уравнений. <br />2.	Для указанного преподавателем тела получить дифференциальное уравнение движения. <br />3.	Для указанного преподавателем тела получить дифференциальное уравнение движения, используя теорему об изменении кинетической энергии. <br />4.	Решить полученное в пунктах 2 и 3 дифференциальное уравнение при заданных начальных условиях. <br />5.	Получить математическую модель для анализа условий равновесия рассматриваемой механической системы.  

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача Д1
Автомобиль М массой m имея в точке А начальную скорость V0, движется по трассе АВС и мосту СД. Участки АВ и ВС наклонные.
На участке АВ на автомобиль действует постоянная сила трения Fтр, а также постоянная сила F. В точках В и С автомобиль не изменяет величину своей скорости. Мост образует дугу окружности радиуса R. Максимальный прогиб моста h.
Считая автомобиль материальной точкой, определить:
1. Скорости автомобиля в точках В,С трассы и точке К моста
2. Силу давления автомобиля на мост, когда он находится в точке К
3. Установить, находится или нет автомобиль в точке К в отрыве от моста.
Вариант 88

По горизонтальной платформе длины S и массы m1, находившейся в начальный момент времени в покое, двое рабочих перекатывают тяжелый груз из левого конца платформы в правый. В какую сторону и насколько переместится при этом платформа, если общая масса груза и рабочих равна m2. Силами сопротивления движению пренебречь.
Дано: S=6м, m1=3500кг, m2=1500кг.
Курсовая работа по теоретической механике
ЗАДАНИЕ 39
Система состоит из однородного стержня OA длины l и массы m1 и невесомой платформы ED, несущей ползун B массы m2, который перемещается вдоль нее без трения под действием растяжения-сжатия двух одинаковых пружин жесткости с2. К ползуну приложена постоянная по величине вертикальная сила P. Платформа вместе со стержнем образует твердое тело, которое может поворачиваться вокруг опорного шарнира, имеющего спиральную пружину жесткости c1 (рис. 39).

Задача Д8
Вертикальный вал АК, вращающийся с постоянной угловой скоростью ω = 10 c-1, закреплен подпятником в точке А и цилиндрическим подшипником в точке, указанной в табл. Д8 в столбце 2 (AB = BD = DE = EK = a). К валу жестко прикреплены тонкий однородный ломаный стержень массой m = 10 кг, состоящий из частей 1 и 2 (размеры частей стержня показаны на рисунках, где b = 0.1 м, а их массы m1 и m2 пропорциональны длинам), и невесомый стержень длиной l = 4b с точечной массой m3 = 3 кг на конце; оба стержня лежат в одной плоскости. Точки крепления стержней указаны в таблице в столбцах 3 и 4, а углы α, β, γ, φ даны в столбцах 5-8.
Пренебрегая весом вала, определить реакции подпятника и подшипника. При подсчетах принять a = 0.6 м.
Вариант 75

Задача Д3
Механическая система состоит из грузов 1 и 2 (коэффициент трения грузов о плоскость f =0.1), цилиндрического сплошного однородного катка 3 и ступенчатых шкивов 4 и 5 с радиусами ступеней R4 = 0.3 м, r4 = 0,1 м, R5 = 0,2 м, r5 = 0.1 м (массу каждого шкива считать равномерно распределенной по его внешнему ободу). Тела системы соединены друг с другом нитями, намотанными на шкивы, участки нитей параллельны соответствующим плоскостям.
Под действием силы F = f(s), зависящей от перемещения точки приложения силы, система приходит в движение из состояния покоя. При движении системы на шкивы 4 и 5 действуют постоянные моменты сил сопротивлений, равные соответственно М4 и М5.
Определить значение искомой величины в тот момент времени, когда перемещение точки приложения силы F равно s1.
Вариант 34

На однородную призму A, лежащую на горизонтальной плоскости, положена однородная призма B; поперечные сечения призм прямоугольные треугольники, масса призмы A втрое больше массы призмы B. Предполагая, что призмы и горизонтальная плоскость идеально гладкие, определить длину L , на которую передвинется призма A, когда призма B , спускаясь по A, дойдет до горизонтальной плоскости.
Дано: a=18см, b=10см, mA=3*mB.
Граната массы M, летевшая горизонтально со скоростью V0, разорвалась в воздухе на 2 части. Скорость осколка 1 массы m1 возросла в направлении движения до V1. Определить скорость и направление движения второго осколка 2.
Дано: M=12кг, m1=8кг, V0=10м/c, V1=20м/c.
Задача Д1
Груз D массой m=6кг, получив в точке А начальную скорость V0=15м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=12Н). и сила сопротивления среды R, зависящая от скорости v груза, R=0.6·V2 (направлена против движения).
В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила А, проекция которой на ось X: Fx =-5sin(2t).
Считая груз материальной точкой и зная расстояние АВ=l=5м движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.
Вариант 44

На тело 1 действует постоянная сила F. Определить ускорение этого тела в момент времени t, если относительно него под действием внутренних сил системы движется тело 2 согласно уравнению x=x(t). Тела движутся поступательно.
Дано: m1=4кг, m2=1кг, t=0.5c, F=10H, x=sin(π*t).
По борту стоящего свободно на воде катера массы m1 и длины S с носа на корму переходит человек массы m2. Пренебрегая сопротивлением воды, определить направление и величину перемещения катера L.
Дано: S=5м, m1=600кг, m2=80кг.