Артикул: 1000210

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Теория вероятности (2126 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (1013 шт.)

Название или условие:
Биноминальный и показательный законы, коэффициент корреляции, дисперсия

Описание:
Случайная величина X распределена по биноминальному закону с параметрами n=71 и p=0.24, а случайная величина Y распределена по показательному закону с параметром λ=0.59. Найдите математическое ожидание E(6X-12Y+6) и дисперсию D(12X-6Y), если коэффициент корреляции X и Y равен -0.6.


Поисковые тэги: Теория вероятности и математическая статистика (ТВиМС)

Изображение предварительного просмотра:

Биноминальный и показательный законы, коэффициент корреляции, дисперсия

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Для приведенных группированных выборок, приняв 10%-ный уровень значимости, проверить гипотезу Н0 о том, что они получены из нормально распределенной генеральной совокупности.
Величина контрольного размера 68 деталей, изготовленных на одном станке (мм):

Случайная величина X задана функцией распределения. Найти: плотность вероятности f(x), вероятность попадания случайной величины в интервал (-1;1), среднеквадратическое отклонение Х. Построить графики плотности распределения и функции распределения.
Задана непрерывная случайная величина Χ функцией распределения F(х). Требуется:
1) найти плотность распределения вероятностей f(x);
2) схематично построить графики функций f(x) и F(х);
3) найти математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины Х;
4) найти вероятность того, что Х примет значение из интервала (α;β).
Вариант 1

Заданы среднее квадратическое отклонение σ=2 нормальной распределенной случайной величины Х, выборочная средняя Xв и объем выборки n=16.
Требуется:
1) найти доверительный интервал для оценки неизвестного математического ожидания а с доверительной вероятностью γ=0,95;
2) принимая α≈Xв , написать теоретическую плотность распределения вероятностей и схематично построить ее график;
3) следуя правилу «трех сигм», определить приближенно максимальное и минимальное значения случайной величины Х;
4) оценить вероятность того, что Х примет значение, превышающее β=19.
Два баскетболиста делают по три броска мячом в корзину. Вероятности попадания мяча при каждом броске равны соответственно 0,8 и 0,6. Найти вероятность того, что у первого будет больше попаданий, чем у второго.Техническая система состоит из пяти узлов. Вероятность нарушения режима работы для каждого узла равна 0,2. Найти вероятность выхода из строя двух узлов системы; хотя бы одного узла; наивероятнейшее число узлов, не вышедших из строя
Среди поступающих на сборку деталей с первого автомата 0,1% брака, со второго – 0,2%, с третьего – 0,25%. Производительности их относятся как 5:3:3. Найти вероятность того, взятая наудачу деталь окажется бракованной.Авиакомпания знает, что в среднем 5% людей, делающих предварительный заказ на определенный рейс, не будет его использовать. Если авиакомпания продала 160 билетов на самолет, в котором лишь 155 мест, чему равна вероятность того, что место будет доступно для любого пассажира, имеющего заказ и планирующего улететь?
Для приведенных группированных выборок, приняв 10 %-ный уровень значимости, проверить гипотезу Н0 о том, что они получены из нормально распределенной генеральной совокупности.
В цехе работают 7 мужчин и 3 женщины. По табельным номерам наудачу отобрано 2 человека. Дискретная случайная величина – число мужчин среди отобранных. Найти: ряд распределения, числовые характеристики, функцию распределения F(x). Построить график F(x).