Артикул: 1163661

Раздел:Технические дисциплины (107163 шт.) >
  Сопротивление материалов (сопромат) (676 шт.) >
  Внецентренное растяжение (сжатие) (26 шт.)

Название или условие:
Задание 4
Внецентренное растяжение и сжатие

Для заданного сечения:
- определить положение главных центральных осей инерции;
- вычислить главные центральные моменты инерции и построить ядро сечения.
По заданным (после проверки ) координатам полюса.
- определить положение нейтральной линии;
-определить допустимую сжимающую силу;
- построить пространственную эпюру распределения напряжений по сечению, если RF = 520 КПа; Rсж = 5,2 МПа

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задание 4<br />Внецентренное растяжение и сжатие</b><br />Для заданного сечения:<br /> - определить положение главных центральных осей инерции;<br /> - вычислить главные центральные моменты инерции и построить ядро сечения.<br /> По заданным (после проверки ) координатам полюса.<br /> - определить положение нейтральной линии;<br /> -определить допустимую сжимающую силу;<br /> - построить пространственную эпюру распределения напряжений по сечению, если R<sub>F</sub> = 520 КПа; Rсж = 5,2 МПа

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Чугунный короткий стержень, поперечное сечение которого изображено на рис.1.2, сжимается продольной силой Р, приложенной в точке А. Требуется: 1) вычислить наибольшие растягивающие и наибольшие сжимающие напряжения в поперечном сечении, выразив эти напряжения через Р и размеры сечения; 2) найти допускаемую нагрузку Р при заданных размерах сечения и допускаемых напряжениях для чугуна на сжатие [σс] =100 МПа и на растяжение [σр] =36 МПа.
Для внецентренно сжатого короткого стержня с заданным поперечным сечением и точкой приложения силы требуется:
1.Определить площадь поперечного сечения и положение центра тяжести;
2.Определить моменты инерции и радиусы инерции относительно главных центральных осей;
3.Определить положение нулевой линии;
4.Определить грузоподъемность колонны (величину наибольшей сжимающей силы) из условия прочности по методу предельных состояний, приняв расчетные сопротивления мaтериала при растяжении Rр = 1 МПа, при сжатии Rс = 5 МПа, коэффициент условий работы γс = 1;
5.Построить эпюру нормальных напряжений в поперечном сечении от действия найденной расчетной силы;
6.Построить эпюру напряжений в основании стержня с учетом его собственного веса. Высота стержня - H, объемный вес материала - γ;
7.Построить контур ядра сечения.

Пункт А. Расчет главных напряжений, направления главных площадок, главных деформаций (круг Мора)
Пункт Б. Нормальные напряжения, абсолютные удлинения ребер, полная потенциальная энергия тела, изменение объема параллелепипеда, экстремальные касательные напряжения.

Какого диаметра d следует взять, стержень В (рис), к которому приложена эксцентричная растягивающая сила F=4кН при плече ℓ=250мм, чтобы наибольшее напряжение растяжения не превосходило 70 Н/мм2.
Плоское напряженное состояние в точке тела.
Стальной кубик находится под действием сил, создающих плоское напряженное состояние (одно из трех главных напряжений равно нулю).
Требуется найти:
1) главные напряжения и направление главных площадок;
2) максимальные касательные напряжения, равные наибольшей полуразности главных напряжений;
3) относительные деформации εх, εу, εz;
4) относительное изменение объема;
5) удельную потенциальную энергию деформаций.
Исходные данные для решения задачи:
схема кубика показана на рис. 6.
Заданные напряжения:
σx = 10 МПа, σy =100 МПа, Тxy = 20 МПа

Чугунный стержень, поперечный разрез которого изображен на рисунке, сжимается продольной силой P, приложенной в точке А
Требуется:
1. Найти наибольшее сжимающее и растягивающее напряжение в поперечном разрезе, выразив величины этих напряжений через размеры сечения
2. Найти допустимые нагрузки

Расчет жесткого бруса на внецентренное сжатие
a = 0.3 м, Rраст. = 5 МПа, Rсж. = 13 МПа

Внецентренное растяжение (сжатие)
Условие задачи: На короткий стержень действует сжимающая сила F, приложенная в полюс (точку p).
Требуется: Определим допускаемую нагрузку F из условия прочности.

Внецентренное растяжение или сжатие
Чугунный короткий стержень, поперечное сечение которого изображено на рис. 2.2, имеет размеры а = 3 cм, b = 2 см и сжимается продольной силой Р, приложенной в точке А. Допускаемые нормальные напряжения: на сжатие [δc] = 120 МПа; на растяжение [δр] = 30 МПа.
Требуется: 1) вычислить наибольшее растягивающее и наибольшее сжимающее напряжения в поперечном сечении, выразив величины этих напряжений через Р и размеры сечения;
2) найти допускаемую нагрузку (Р) при заданных размерах сечения и допускаемых напряжениях чугуна на сжатие [δc] и на растяжение [δр].

Определение грузоподъемности внецентренно сжатого стержня
На стержень заданного поперечного сечения в точке «А» действует сжимающая сила F. Требуется определить величину допускаемой нагрузки
Поперечное сечение внецентренно сжатого стержня состоит из четырех одинаковых швеллеров № 16