Артикул: 1160108

Раздел:Технические дисциплины (103889 шт.) >
  Теоретическая механика (теормех, термех) (2001 шт.) >
  Динамика (376 шт.)

Название или условие:
Задание Д9. Применение теоремы об изменении кинетического момента к определению угловой скорости твердого тела
Тело Н массой m1 вращается вокруг вертикальной оси z с постоянной угловой скоростью ω0; при этом в точке О желоба АВ тела Н на расстоянии АО от точки А, отсчитываемом вдоль желоба, находится материальная точка К массой m2. В некоторый момент времени (t = 0) на систему начинает действовать пара сил с моментом Mz = Mz(t). При t = τ действие сил прекращается.
Определить угловую скорость ωτ тела Н в момент t = τ.
Тело Н вращается по инерции с угловой скоростью ωτ.
В некоторый момент времени t1 = 0 (t1 - новое начало отсчета времени) точка К (самоходный механизм) начинает относительное движение из точки О вдоль желоба АВ (в направлении к В) по закону OK = s = s (t1).
Определить угловую скорость ωТ тела Н при t1 = Т.
Тело Н рассматривать как однородную пластинку, имеющую форму, показанную на рисунке.
Вариант 7
Дано: m1 = 300 кг; m2 = 50 кг; ω = - 2 рад/с; а = 1,6 м; b = 1 м; R = 0,8 м; АО = 0; Mz=Mz*=968 Нм ; τ = 1 с; OK=s =(πR/2)·t12 ; Т = 1 с.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задание Д9. Применение теоремы об изменении кинетического момента к определению угловой скорости твердого тела  </b><br />Тело Н массой m1 вращается вокруг вертикальной оси z с постоянной угловой скоростью ω0; при этом в точке О желоба АВ тела Н на расстоянии АО от точки А, отсчитываемом вдоль желоба, находится материальная точка К массой m2. В некоторый момент времени (t = 0) на систему начинает действовать пара сил с моментом Mz = Mz(t). При t = τ действие сил прекращается. <br />Определить угловую скорость ωτ тела Н в момент t = τ. <br />Тело Н вращается по инерции с угловой скоростью ωτ. <br />В некоторый момент времени t1 = 0 (t1 - новое начало отсчета времени) точка К (самоходный механизм) начинает относительное движение из точки О вдоль желоба АВ (в направлении к В) по закону OK = s = s (t1). <br />Определить угловую скорость ωТ тела Н при t1 = Т. <br />Тело Н рассматривать как однородную пластинку, имеющую форму, показанную на рисунке.    <br /><b>Вариант 7</b><br />  Дано: m1 = 300 кг; m2 = 50 кг; ω = - 2 рад/с; а = 1,6 м; b = 1 м; R = 0,8 м; АО = 0; Mz=Mz*=968 Нм ; τ = 1 с; OK=s =(πR/2)·t1<sup>2</sup> ; Т = 1 с.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Практическое задание 6
«Теорема об изменении кинетической энергии механической системы»
Механизм, состоящий из груза А, блока В (больший радиус – R, меньший – r, радиус инерции относительно центральной оси – i) и однородного круглого цилиндра С радиусом RC, установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Качение цилиндра (блока) происходит без проскальзывания. Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела, параллельны плоскостям. Какую скорость развил груз А, переместившись на расстояние SA?
Вариант 54 (Схема 22)
Дано: mA=9кг, mB=3кг, mC=15кг, α=60°, β=45°, RC=30см=0.3м, g≈9.8м/с2, R=60см=0.6м, r=40см=0.4м, i=52см=0.52м, SA=1м.
Определить: VA-?

Задание Д6
Шарик, принимаемый за материальную точку, движется из положения А внутри трубки, ось которой расположена в вертикальной плоскости (рис. 1). Найти скорость шарика в положениях B и C и давление шарика на стенку трубки в положении C. Трением на криволинейных участках траектории пренебречь.
Вариант 7
Дано: m = 0,4 кг; VА = 5 м/с; τ = 5 с; R = 1,0 м; f = 0,10; α = 30°; h0 = 5 см; с = 5 Н/см.

Задание Д1. Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил
Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом α к горизонту и имеющего длину l (рис. 9), со скоростью vA. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется τ с; в точке В со скоростью vB он покидает трамплин. Через Т с лыжник приземляется со скоростью vC в точке С горы, составляющей угол β с горизонтом. При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха.
Вариант 7
Числовые данные: α = 15°; f = 0,1; vA = 16 м/с; l = 5 м; β = 45°. Определить vВ и Т.

Вариант 30
Груз D прикреплен к горизонтальной крышке с помощью двух пружин жесткостью c1 и c2 соответственно. В некоторый момент времени груз отклоняют на величину λ0 вниз и одновременно сообщают ему начальную скорость v0, направленную вниз. Сила сопротивления движению пропорциональна скорости тела v, R = -μv, где μ - коэффициент сопротивления. Сопротивлением движению груза по стенке пренебречь.
Определить закон движения груза
Набор данных 2

Найти значение момента М.
Определить закон движения оси катка x0(t) и направление движения катка
Задача Д1
Груз D массой m=5кг, получив в точке А начальную скорость V0=0,2м/с, движется по изогнутой трубе АВС, расположенной в вертикальной плоскости (α=30°).
На участке АВ на груз, кроме силы тяжести, действует постоянная сила (Q=10Н), направленная от точки А к точке В, и сила сопротивления среды R, зависящая от скорости v груза, R=0,1V2.
В точке В груз изменяет направление приобретенной скорости, но сохраняет при этом ее величину, переходит на участок ВС трубы, где на него кроме силы тяжести действует сила трения (коэффициент трения груза о трубу f= 0,2) и переменная по величине сила F, направленная вдоль участка ВС, проекция которой на ось X: Fx =3sin(πt).
Считая тело материальной точкой и зная расстояние АВ=l=2м движения тела от точки А до точки В, найти закон движения груза на участке ВС
Вариант 10.1

Практическое задание 6
«Теорема об изменении кинетической энергии механической системы»
Механизм, состоящий из груза А, блока В (больший радиус – R, меньший – r, радиус инерции относительно центральной оси – i) и однородного круглого цилиндра С радиусом RC, установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Качение цилиндра (блока) происходит без проскальзывания. Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела, параллельны плоскостям. Какую скорость развил груз А, переместившись на расстояние SA?
Вариант 14 (Схема 14)
Дано: mA=9кг, mB=3кг, mC=12кг, α=30°, β=45°, RC=18см=0.18м, g≈9.8м/с2, R=36см=0.48м, r=24см=0.24м, i=32см=0.32м, SA=1м.
Определить: VA(SA)-?

Задача D2
Механическая система включает два ступенчатых шкива 1, 2, обмотанных нитями, грузы 3, 4, 5, 6, прикрепленные к этим нитям, и невесомый блок, предназначенный для изменения направления нити. Система движется в вертикальной плоскости под действием сил тяжести грузов и пары сил с моментов M, приложенным к одному из шкивов.
Радиусы внешних ступеней шкивов R1 и R2, веса шкивов P1, P2 и грузов P3, P4, P5, P6, а также величина момента M для конкретных вариантов задачи приведены в табл. D2. Радиусы внутренних ступеней шкивов ri=0.5Ri (i=1,2). Радиусы инерции шкивов относительно осей вращения ρi=0.6Ri.
Пренебрегая силами трения и считая нити нерастяжимыми, определить:
- линейные ускорения грузов;
- угловые ускорения шкивов;
- силы натяжения нитей на участках между грузами и шкивами.

Тонкий однородный стержень АВ массой m и длиной l вращается с постоянной угловой скоростью w вокруг вертикальной оси OA. Стержень закреплен на оси при помощи шарнира А и невесомого стержня BD; положение стержня АВ определяется углами α и β. Определить реакции связей стержня АВ