Артикул: 1160106

Раздел:Технические дисциплины (103887 шт.) >
  Теоретическая механика (теормех, термех) (1999 шт.) >
  Динамика (374 шт.)

Название или условие:
Задание Д1. Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил
Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом α к горизонту и имеющего длину l (рис. 9), со скоростью vA. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется τ с; в точке В со скоростью vB он покидает трамплин. Через Т с лыжник приземляется со скоростью vC в точке С горы, составляющей угол β с горизонтом. При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха.
Вариант 7
Числовые данные: α = 15°; f = 0,1; vA = 16 м/с; l = 5 м; β = 45°. Определить vВ и Т.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b> Задание Д1. Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил</b>  <br />Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом α к горизонту и имеющего длину l (рис. 9), со скоростью vA. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется τ с; в точке В со скоростью vB он покидает трамплин. Через Т с лыжник приземляется со скоростью vC в точке С горы, составляющей угол β с горизонтом. При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха. <br /><b>Вариант 7</b><br />Числовые данные: α = 15°; f = 0,1; vA = 16 м/с; l = 5 м; β = 45°. Определить vВ и Т.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Исследование колебаний механической системы с одной степенью свободы (Курсовая работа)
Дана механическая система с одной степенью свободы, представляющая собой совокупность абсолютно твердых тел, связанных друг с другом посредством невесомых нерастяжимых нитей, параллельных соответствующим плоскостям. Система снабжена внешней упругой связью с коэффициентом жесткости c. На первое тело системы действует сила сопротивления R = -μ·V в возмущающая гармоническая сила F(t)=F0sin(pt). Трением качения и скольжения пренебрегаем. Качение катков происходит без скольжения, проскальзывание нитей на блоках отсутствует. С применением основных теорем динамики системы и аналитических методов теоретической механики определить закон движения первого тела и реакции внешних и внутренних связей. Произвести численный анализ полученного решения с использованием компьютера.

Исследование колебаний механической системы с одной степенью свободы (курсовая работа)
Вариант № 29-6
Исследуется движение механической системы с одной степенью свободы, на которую действуют момент сопротивления Mc = -vω и возмущающая гармоническая сила F(t). Трением качения и скольжения пренебрегаем. Качение катков происходит без скольжения, проскальзывание нитей на блоках отсутствует. Требуется, используя основные теоремы динамики системы и аналитические методы теоретической механики, определить закон движения первого тела и реакции внешних и внутренних связей.

Найти значение момента М.
Практическое задание 7
«Общее уравнение динамики»
Номер варианта задается преподавателем и соответствует номеру на рисунке. Для заданной механической системы определить ускорение груза. Массами нитей пренебречь. Трение качения и силы сопротивления в подшипниках не учитывать. Система движется из состояния покоя.
Варианты механических систем показаны на рисунке, необходимые для решения данные приведены в таблице.
Блоки и катки, для которых радиусы инерции в таблице указаны, считать сплошными однородными цилиндрами.
Вариант 20 (Схема 20)
Дано: G1=4*G, G2=0.2*G, G3=0.1*G, G4=3*G, R2=1.8*r, r2=1.5*r, i2=1.6*r, i3=r*√2, R3=2*r, r3=r, g≈10м/с2.
Найти: a1, T1-?

Задача D2
Механическая система включает два ступенчатых шкива 1, 2, обмотанных нитями, грузы 3, 4, 5, 6, прикрепленные к этим нитям, и невесомый блок, предназначенный для изменения направления нити. Система движется в вертикальной плоскости под действием сил тяжести грузов и пары сил с моментов M, приложенным к одному из шкивов.
Радиусы внешних ступеней шкивов R1 и R2, веса шкивов P1, P2 и грузов P3, P4, P5, P6, а также величина момента M для конкретных вариантов задачи приведены в табл. D2. Радиусы внутренних ступеней шкивов ri=0.5Ri (i=1,2). Радиусы инерции шкивов относительно осей вращения ρi=0.6Ri.
Пренебрегая силами трения и считая нити нерастяжимыми, определить:
- линейные ускорения грузов;
- угловые ускорения шкивов;
- силы натяжения нитей на участках между грузами и шкивами.

Определить закон движения оси катка x0(t) и направление движения катка
Практическое задание 6
«Теорема об изменении кинетической энергии механической системы»
Механизм, состоящий из груза А, блока В (больший радиус – R, меньший – r, радиус инерции относительно центральной оси – i) и однородного круглого цилиндра С радиусом RC, установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Качение цилиндра (блока) происходит без проскальзывания. Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела, параллельны плоскостям. Какую скорость развил груз А, переместившись на расстояние SA?
Вариант 14 (Схема 14)
Дано: mA=9кг, mB=3кг, mC=12кг, α=30°, β=45°, RC=18см=0.18м, g≈9.8м/с2, R=36см=0.48м, r=24см=0.24м, i=32см=0.32м, SA=1м.
Определить: VA(SA)-?

Тонкий однородный стержень АВ массой m и длиной l вращается с постоянной угловой скоростью w вокруг вертикальной оси OA. Стержень закреплен на оси при помощи шарнира А и невесомого стержня BD; положение стержня АВ определяется углами α и β. Определить реакции связей стержня АВ
Расчётно-графическая работа № 1 на тему: «Динамическое исследование движения механической системы с одной степенью свободы» .
При выполнении задания необходимо:
1. Используя общие теоремы динамики, составить систему уравнений, описывающих движение тел заданной механической системы. Исключая из этой системы уравнений внутренние силы, получить дифференциальное уравнение движения системы, служащее для определения зависимости s(t) координаты точки A от времени.
2. Получить то же самое дифференциальное уравнение движения системы, используя теорему об изменении кинетической энергии в дифференциальной форме.
3. Получить дифференциальное уравнение движения механической системы на основании общего уравнения динамики.
4. Убедившись в совпадении результатов, полученных тремя независимыми способами, проинтегрировать дифференциальное уравнение движения системы и получить зависимость s(t) координаты центра A катка 1 от времени.
5. Определить натяжения тросов в начальный момент времени (при t=0 ).
Вариант 244

Задача Д1
Груз D массой m=5кг, получив в точке А начальную скорость V0=0,2м/с, движется по изогнутой трубе АВС, расположенной в вертикальной плоскости (α=30°).
На участке АВ на груз, кроме силы тяжести, действует постоянная сила (Q=10Н), направленная от точки А к точке В, и сила сопротивления среды R, зависящая от скорости v груза, R=0,1V2.
В точке В груз изменяет направление приобретенной скорости, но сохраняет при этом ее величину, переходит на участок ВС трубы, где на него кроме силы тяжести действует сила трения (коэффициент трения груза о трубу f= 0,2) и переменная по величине сила F, направленная вдоль участка ВС, проекция которой на ось X: Fx =3sin(πt).
Считая тело материальной точкой и зная расстояние АВ=l=2м движения тела от точки А до точки В, найти закон движения груза на участке ВС
Вариант 10.1