Артикул: 1156392

Раздел:Технические дисциплины (100448 шт.) >
  Теоретическая механика (теормех, термех) (1962 шт.) >
  Динамика (371 шт.)

Название или условие:
Задача №4
Применение теоремы об изменении кинетической энергии

Груз 1 (массой m1) поднимается при помощи троса (рис. 1), перекинутого через блок 3 (радиуса r и масса m3), который приводится во вращение электромотором, создающим постоянный вращающий момент МО. Определить угловую скорость вращения барабана 2 в тот момент, когда груз 1 поднимется на высоту h. Барабан 2 имеет форму цилиндра, а блок 3 форму диска. В начальный момент времени система находилась в покое. Массой троса пренебречь.
Вариант 2
Дано: m1 = 9 кг; m2 = 14 кг; m = 0,6 кг; R = 0,2 м; r = 0,1 м; МО = 350 Н∙м; h = 0,6 м.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задача №4  <br />Применение теоремы об изменении кинетической энергии</b>  <br />Груз 1 (массой m1) поднимается при помощи троса (рис. 1), перекинутого через блок 3 (радиуса r и масса m3), который приводится во вращение электромотором, создающим постоянный вращающий момент МО. Определить угловую скорость вращения барабана 2 в тот момент, когда груз 1 поднимется на высоту h. Барабан 2 имеет форму цилиндра, а блок 3 форму диска. В начальный момент времени система находилась в покое. Массой троса пренебречь. <br /><b>Вариант 2</b>  <br />Дано: m1 = 9 кг; m2 = 14 кг; m = 0,6 кг; R = 0,2 м; r = 0,1 м; МО = 350 Н∙м; h = 0,6 м.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Определить скорость V3
Задание Д6
Шарик, принимаемый за материальную точку, движется из положения А внутри трубки, ось которой расположена в вертикальной плоскости (рис. 1). Найти скорость шарика в положениях B и C и давление шарика на стенку трубки в положении C. Трением на криволинейных участках траектории пренебречь.
Вариант 7
Дано: m = 0,4 кг; VА = 5 м/с; τ = 5 с; R = 1,0 м; f = 0,10; α = 30°; h0 = 5 см; с = 5 Н/см.

Груз D массой m, получив в точке А начальную скорость V0, движется в изогнутой трубе ABC, расположенной в вертикальной плоскости; участки трубы один горизонтальный, другой вертикальный. На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рис.1.1) и сила сопротивления среды R, зависящая от скорости V груза (направлена против движения), трением груза о трубу на участке АВ пренебречь. В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действуют сила трения (коэффициент трения груза о трубу f) и переменная сила F, проекция которой F_x на ось Bх задана. Считая груз материальной точкой и зная время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС.
Вариант 3.6

Задание Д4. Исследование относительного движения материальной точки
Шарик М, рассматриваемый как материальная точка, перемещается по цилиндрическому каналу движущегося тела А (рис. 11). Найти уравнение относительного движения этого шарика х = f(t), приняв за начало отсчета точку О. Тело А равномерно вращается вокруг неподвижной оси (ось вращения z1 вертикальна). Найти также координату х и давление шарика на стенку канала при заданном значении t = t1.
Вариант 7
Дано: m = 0,03 кг; ω = 2π рад/с; х0 = 0,3 м; ; t1 = 0,2 с; h = 0,2 м; f = 0.

Задание Д1. Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил
Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом α к горизонту и имеющего длину l (рис. 9), со скоростью vA. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется τ с; в точке В со скоростью vB он покидает трамплин. Через Т с лыжник приземляется со скоростью vC в точке С горы, составляющей угол β с горизонтом. При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха.
Вариант 7
Числовые данные: α = 15°; f = 0,1; vA = 16 м/с; l = 5 м; β = 45°. Определить vВ и Т.

Динамика точки
Тело массой m, прикрепленное пружиной к неподвижной точке, движется по гладкой плоскости, образующей угол α с горизонтом, под действием возмущающей силы F = F0sin(pt) В начальный момент тело находилось в покое в положении равновесия. Найти
1) Частоту и период свободных колебаний
2) Уравнения движения тела
Вариант 4

Практическое задание 7
«Общее уравнение динамики»
Номер варианта задается преподавателем и соответствует номеру на рисунке. Для заданной механической системы определить ускорение груза. Массами нитей пренебречь. Трение качения и силы сопротивления в подшипниках не учитывать. Система движется из состояния покоя.
Варианты механических систем показаны на рисунке, необходимые для решения данные приведены в таблице.
Блоки и катки, для которых радиусы инерции в таблице указаны, считать сплошными однородными цилиндрами.
Вариант 54 (Схема 24)
Дано: G1=2*G, G2=G, G3=G, G4=8*G, R2=R3=r, g≈9.81м/с2.
Найти: a1, T-?

Практическое задание 7
«Общее уравнение динамики»
Номер варианта задается преподавателем и соответствует номеру на рисунке. Для заданной механической системы определить ускорение груза. Массами нитей пренебречь. Трение качения и силы сопротивления в подшипниках не учитывать. Система движется из состояния покоя.
Варианты механических систем показаны на рисунке, необходимые для решения данные приведены в таблице.
Блоки и катки, для которых радиусы инерции в таблице указаны, считать сплошными однородными цилиндрами.
Вариант 20 (Схема 20)
Дано: G1=4*G, G2=0.2*G, G3=0.1*G, G4=3*G, R2=1.8*r, r2=1.5*r, i2=1.6*r, i3=r*√2, R3=2*r, r3=r, g≈10м/с2.
Найти: a1, T1-?

Задание Д.10. Применение теоремы об изменении кинетической энергии к изучению движения механической системы
Механическая система под действием сил тяжести приходит в движение из состояния покоя. Начальное положение системы показано на рис. 1. Учитывая сопротивление качению тела 3, катящегося без скольжения, пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела 1 в тот момент, когда пройденный им путь станет равным s.
Блоки в катки, для которых радиусы инерции в таблице не указаны, считать сплошными однородными цилиндрами.
Наклонные участки нитей параллельны соответствующим наклонным плоскостям.
Вариант 7
Дано: m1 = m; m2 = 2m; m3 = 2m; R2 = 16 см; R3 = 25 см; i2х = 14 см; α = 30°; δ = 0,20; s = 2 м.

Практическое задание 5
«Движение материальной точки под действием постоянных сил»
Вариант 54(24).
Варианты 21…25 (схема 5). Тело движется из точки А по участку АВ (длиной l) наклонной плоскости, составляющей угол α с горизонтом. Его начальная скорость VA. Коэффициент трения скольжения равен f. Через τ секунд тело в точке В со скоростью VB покидает наклонную плоскость и падает на горизонтальную плоскость в точку С со скоростью VC при этом оно находится в воздухе Т секунд. При решении задачи принять тело за материальную точку и не учитывать сопротивление воздуха.
Дано: VA=0, d=12м, l=10м, α=30°, f=0.2.
Определить: τ, h-?