Артикул: 1160107

Раздел:Технические дисциплины (103888 шт.) >
  Теоретическая механика (теормех, термех) (2000 шт.) >
  Динамика (375 шт.)

Название или условие:
Задание Д4. Исследование относительного движения материальной точки
Шарик М, рассматриваемый как материальная точка, перемещается по цилиндрическому каналу движущегося тела А (рис. 11). Найти уравнение относительного движения этого шарика х = f(t), приняв за начало отсчета точку О. Тело А равномерно вращается вокруг неподвижной оси (ось вращения z1 вертикальна). Найти также координату х и давление шарика на стенку канала при заданном значении t = t1.
Вариант 7
Дано: m = 0,03 кг; ω = 2π рад/с; х0 = 0,3 м; ; t1 = 0,2 с; h = 0,2 м; f = 0.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

<b>Задание Д4. Исследование относительного движения материальной точки </b> <br />Шарик М, рассматриваемый как материальная точка, перемещается по цилиндрическому каналу движущегося тела А (рис. 11). Найти уравнение относительного движения этого шарика х = f(t), приняв за начало отсчета точку О. Тело А равномерно вращается вокруг неподвижной оси (ось вращения z1 вертикальна).  Найти также координату х и давление шарика на стенку канала при заданном значении t = t1.  <br /><b>Вариант 7</b><br />  Дано: m = 0,03 кг; ω = 2π рад/с; х0 = 0,3 м;  ; t1 = 0,2 с; h = 0,2 м; f = 0.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

К системе блоков подвешены грузы массами m1 и т2. Определить ускорение а1 груза массой m1 если масса неподвижного блока равна т, а его радиус инерции относительно оси вращения О равен ρ. Массой подвижного блока пренебречь.
Тонкий однородный стержень АВ массой m и длиной l вращается с постоянной угловой скоростью w вокруг вертикальной оси OA. Стержень закреплен на оси при помощи шарнира А и невесомого стержня BD; положение стержня АВ определяется углами α и β. Определить реакции связей стержня АВ
Основные теоремы динамики
Задание 5
Вариант 1

Определить закон движения оси катка x0(t) и направление движения катка
Вариант 30
Груз D прикреплен к горизонтальной крышке с помощью двух пружин жесткостью c1 и c2 соответственно. В некоторый момент времени груз отклоняют на величину λ0 вниз и одновременно сообщают ему начальную скорость v0, направленную вниз. Сила сопротивления движению пропорциональна скорости тела v, R = -μv, где μ - коэффициент сопротивления. Сопротивлением движению груза по стенке пренебречь.
Определить закон движения груза
Набор данных 2

Практическое задание 7
«Общее уравнение динамики»
Номер варианта задается преподавателем и соответствует номеру на рисунке. Для заданной механической системы определить ускорение груза. Массами нитей пренебречь. Трение качения и силы сопротивления в подшипниках не учитывать. Система движется из состояния покоя.
Варианты механических систем показаны на рисунке, необходимые для решения данные приведены в таблице.
Блоки и катки, для которых радиусы инерции в таблице указаны, считать сплошными однородными цилиндрами.
Вариант 54 (Схема 24)
Дано: G1=2*G, G2=G, G3=G, G4=8*G, R2=R3=r, g≈9.81м/с2.
Найти: a1, T-?

Задание Д1. Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил
Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом α к горизонту и имеющего длину l (рис. 9), со скоростью vA. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется τ с; в точке В со скоростью vB он покидает трамплин. Через Т с лыжник приземляется со скоростью vC в точке С горы, составляющей угол β с горизонтом. При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха.
Вариант 7
Числовые данные: α = 15°; f = 0,1; vA = 16 м/с; l = 5 м; β = 45°. Определить vВ и Т.

Груз D массой m, получив в точке А начальную скорость V0, движется в изогнутой трубе ABC, расположенной в вертикальной плоскости; участки трубы один горизонтальный, другой вертикальный. На участке АВ на груз кроме силы тяжести действуют постоянная сила Q (ее направление показано на рис.1.1) и сила сопротивления среды R, зависящая от скорости V груза (направлена против движения), трением груза о трубу на участке АВ пренебречь. В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действуют сила трения (коэффициент трения груза о трубу f) и переменная сила F, проекция которой F_x на ось Bх задана. Считая груз материальной точкой и зная время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС.
Вариант 3.6

Задание Д.10. Применение теоремы об изменении кинетической энергии к изучению движения механической системы
Механическая система под действием сил тяжести приходит в движение из состояния покоя. Начальное положение системы показано на рис. 1. Учитывая сопротивление качению тела 3, катящегося без скольжения, пренебрегая другими силами сопротивления и массами нитей, предполагаемых нерастяжимыми, определить скорость тела 1 в тот момент, когда пройденный им путь станет равным s.
Блоки в катки, для которых радиусы инерции в таблице не указаны, считать сплошными однородными цилиндрами.
Наклонные участки нитей параллельны соответствующим наклонным плоскостям.
Вариант 7
Дано: m1 = m; m2 = 2m; m3 = 2m; R2 = 16 см; R3 = 25 см; i2х = 14 см; α = 30°; δ = 0,20; s = 2 м.

Задание Д9. Применение теоремы об изменении кинетического момента к определению угловой скорости твердого тела
Тело Н массой m1 вращается вокруг вертикальной оси z с постоянной угловой скоростью ω0; при этом в точке О желоба АВ тела Н на расстоянии АО от точки А, отсчитываемом вдоль желоба, находится материальная точка К массой m2. В некоторый момент времени (t = 0) на систему начинает действовать пара сил с моментом Mz = Mz(t). При t = τ действие сил прекращается.
Определить угловую скорость ωτ тела Н в момент t = τ.
Тело Н вращается по инерции с угловой скоростью ωτ.
В некоторый момент времени t1 = 0 (t1 - новое начало отсчета времени) точка К (самоходный механизм) начинает относительное движение из точки О вдоль желоба АВ (в направлении к В) по закону OK = s = s (t1).
Определить угловую скорость ωТ тела Н при t1 = Т.
Тело Н рассматривать как однородную пластинку, имеющую форму, показанную на рисунке.
Вариант 7
Дано: m1 = 300 кг; m2 = 50 кг; ω = - 2 рад/с; а = 1,6 м; b = 1 м; R = 0,8 м; АО = 0; Mz=Mz*=968 Нм ; τ = 1 с; OK=s =(πR/2)·t12 ; Т = 1 с.