Артикул: 1156083

Раздел:Технические дисциплины (100271 шт.) >
  Математика (32764 шт.) >
  Теория вероятности (4266 шт.) >
  Теория вероятности и математическая статистика (ТВиМС) (2760 шт.)

Название или условие:
На четырех одинаковых карточках написаны буквы У, Р, А, Л. Карточки перемешиваются и наугад раскладываются в ряд. Найти вероятность того, что получится слово УРАЛ.

Описание:
Подробное решение в WORD

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Проверка функционирования устройства осуществляется специальным тестом. Если устройство функционирует правильно, то вероятность прохождения теста равна 0,99; в противном случае вероятность прохождения теста равна 0,40. Устройство допускается к работе, если тест проходит 5 раз подряд.
В предположении, что число прохождений теста подчиняется биномиальному распределению, ответить на следующие вопросы:
а) Какова область изменения и критическая область статистики критерия? Какое распределение имеет статистика критерия?
б) Как сформулировать нулевую гипотезу, если ошибка первого рода состоит в отклонении правильно функционирующего устройства?
в) Какова альтернативная гипотеза и в чем состоит ошибка второго рода?
г) Чему равны вероятности ошибок первого и второго рода?
Авиакомпания знает, что в среднем 5% людей, делающих предварительный заказ на определенный рейс, не будет его использовать. Если авиакомпания продала 160 билетов на самолет, в котором лишь 155 мест, чему равна вероятность того, что место будет доступно для любого пассажира, имеющего заказ и планирующего улететь?
В первом ящике из 14 ламп 3 неисправны, во втором – из 10 ламп одна неисправная. Какова вероятность извлечь из наугад выбранного ящика исправную лампу? Даны результаты выборочных наблюдений случайной величины. Найти несмещенные оценки математического ожидания, дисперсии и среднего квадратического отклонения. Считая случайно величину нормально распределенной, с надежностью 0,95 найти интервальную оценку для ее математического ожидания при известном среднем квадратическом отклонении (σ=2) и при неизвестном среднем квадратическом отклонении
Заданы среднее квадратическое отклонение σ=2 нормальной распределенной случайной величины Х, выборочная средняя Xв и объем выборки n=16.
Требуется:
1) найти доверительный интервал для оценки неизвестного математического ожидания а с доверительной вероятностью γ=0,95;
2) принимая α≈Xв , написать теоретическую плотность распределения вероятностей и схематично построить ее график;
3) следуя правилу «трех сигм», определить приближенно максимальное и минимальное значения случайной величины Х;
4) оценить вероятность того, что Х примет значение, превышающее β=19.
Среди поступающих на сборку деталей с первого автомата 0,1% брака, со второго – 0,2%, с третьего – 0,25%. Производительности их относятся как 5:3:3. Найти вероятность того, взятая наудачу деталь окажется бракованной.
Задана непрерывная случайная величина Χ функцией распределения F(х). Требуется:
1) найти плотность распределения вероятностей f(x);
2) схематично построить графики функций f(x) и F(х);
3) найти математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины Х;
4) найти вероятность того, что Х примет значение из интервала (α;β).
Вариант 1

Из десяти билетов 4 выигрышных. Приобретается четыре билета. Какова вероятность того, что: хотя бы один из них невыигрышный; не менее трёх выигрышных; все выигрышные?
В результате опыта получена выборочная совокупность.
1. По данной таблице составить интервальный вариационный ряд, разбив всю вариацию на 8-10 интервалов.
2. По сгруппированным данным построить:
а) полигон относительных частот;
б) гистограмму относительных частот;
в) график эмпирической функции распределения.
3. Найти числовые характеристики выборочной совокупности: выборочную среднюю x ̅В, выборочную дисперсию DВ, выборочное среднее квадратическое отклонение σВ и исправленную дисперсию S2.
4. По виду гистограммы и эмпирической функции распределения выборки выдвинуть гипотезу о распределении генеральной совокупности.
5. Проверить выполнения правила “трёх сигм”.
6. Применив критерий согласия Пирсона χ2 с заданным уровнем значимости α, окончательно принять или опровергнуть выдвинутую гипотезу о распределении генеральной совокупности.
7. Найти доверительные интервалы для генеральной средней и генерального среднего квадратического отклонения по уровню надёжности γ.
9. α=0,05; γ=0,95
Вариант 9

Считается, что новое антикоррозийное покрытие имеет эффективность 99%, если среди 20 испытанных образов нет ни одного с признаками коррозии; в противном случае эффективность покрытия принимается равной 90%. Пусть р – вероятность появления признаков коррозии у одного образца. Предположим, что образцы обрабатываются и испытываются независимо один от другого. Рассмотрим нулевую гипотезу Н0: р = 0,10. Ответить на следующие вопросы:
а) Какая статистика критерия используется в задаче, каковы ее распределение и область применения?
б) Какова критическая область критерия?
в) В чем состоят ошибки первого и второго рода и чему равны их вероятности?