Артикул: 1151322

Раздел:Технические дисциплины (96540 шт.) >
  Теоретическая механика (теормех, термех) (1936 шт.) >
  Динамика (366 шт.)

Название или условие:
Практическое задание 6
«Теорема об изменении кинетической энергии механической системы»
Механизм, состоящий из груза А, блока В (больший радиус – R, меньший – r, радиус инерции относительно центральной оси – i) и однородного круглого цилиндра С радиусом RC, установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Качение цилиндра (блока) происходит без проскальзывания. Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела, параллельны плоскостям. Какую скорость развил груз А, переместившись на расстояние SA?
Вариант 54 (Схема 22)
Дано: mA=9кг, mB=3кг, mC=15кг, α=60°, β=45°, RC=30см=0.3м, g≈9.8м/с2, R=60см=0.6м, r=40см=0.4м, i=52см=0.52м, SA=1м.
Определить: VA-?

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Практическое задание 6 <br /><b>«Теорема об изменении кинетической энергии механической системы»</b><br /> Механизм, состоящий из груза А, блока В (больший радиус – R, меньший –   r, радиус инерции относительно центральной оси – i) и однородного круглого   цилиндра С радиусом RC, установлен на призме, закрепленной на плоскости.   Под действием сил тяжести из состояния покоя механизм пришел в   движение. Качение цилиндра (блока) происходит без проскальзывания.   Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити,   соединяющие тела, параллельны плоскостям. Какую скорость развил груз А,   переместившись на расстояние S<sub>A</sub>?<br /><b>Вариант 54 (Схема 22)</b> <br /> Дано: m<sub>A</sub>=9кг, m<sub>B</sub>=3кг, m<sub>C</sub>=15кг, α=60°, β=45°, R<sub>C</sub>=30см=0.3м, g≈9.8м/с<sup>2</sup>, R=60см=0.6м, r=40см=0.4м, i=52см=0.52м, S<sub>A</sub>=1м. <br />Определить: V<sub>A</sub>-?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Найти импульс равнодействующей всех сил, действующих на снаряд за время, когда снаряд из начального положения O переходит в наивысшее положение M.
Дано: m=100кг, α0=60°, V0=500м/c, V1=200м/c.
По горизонтальной платформе, движущейся по инерции со скоростью V_0 перемещается тележка с постоянной относительной скоростью u_0. В некоторый момент времени тележка была заторможена. Определить общую скорость V платформы с тележкой после ее остановки, если масса платформы M, а масса тележки m.
Дано: M=100кг, m=20кг, V0=1м/c, u0=3м/c.
На тело 1 действует постоянная сила F. Определить ускорение этого тела в момент времени t, если относительно него под действием внутренних сил системы движется тело 2 согласно уравнению x=x(t). Тела движутся поступательно.
Дано: m1=4кг, m2=1кг, t=0.5c, F=10H, x=sin(π*t).
Задание Д2
Механическая система состоит из грузов 1 и 2 (коэффициент трения грузов о плоскость f = 0,1 ), цилиндрического сплошного однородного катка 3 и ступенчатых шкивов 4 и 5 с радиусами ступеней R4 = 0,3 м, r4 = 0,1 м, R5 = 0,2 м, r5 = 0,1 м, (массу каждого шкива считать равномерно распределенной по его внешнему ободу) (рис. Д2.0 – Д2.9, табл. Д2). Углы α = 45°, β = 60°, γ = 30° соответственно. Тела системы соединены друг с другом нитями, намотанными на шкивы; участки нитей параллельны соответствующим плоскостям
Под действием силы F = f(s), зависящей от перемещения точки приложения силы, система приходит в движение из состояния покоя. При движении системы на шкивы 4 и 5 действуют постоянные моменты сил сопротивлений, равные соответственно M4 и M5 .
Определить значение искомой величины в тот момент времени, когда перемещение точки приложения силы F равно s1. Искомая величина указана в столбце “Найти” таблицы, где обозначено: V1 - скорость груза 1, VC3 - скорость центра масс катка 3, ω4 - угловая скорость тела 4 и т. д.
Рисунок 2.2 вариант 4.

Задача Д6
Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней R3 = 0,3 м, r3 = 0,1 м и радиусом инерции относительно оси вращения ρ3 = 0,2м, блока 4 радиуса R4 = 0,2 м и катка (или подвижного блока) 5 (рис. Д4.0 – Д4.9, табл. Д4); тело 5 считать сплошным однородным цилиндром, а массу блока 4 – равномерно распределенной по ободу. Коэффициент трения грузов о плоскость f = 0,1. Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными на шкив 3 (или на шкив и каток); участки нитей параллельны соответствующим плоскостям. К одному из тел прикреплена пружина с коэффициентом жесткости с.
Под действием силы F = f(s), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках).
Определить значение искомой величины в тот момент времени, когда перемещение s станет равным s1 = 0,2 м. Искомая величина указана в столбце «Найти» таблицы, где обозначено: υ1, υ2, υС5 – скорости грузов 1, 2 и центра масс тела 5 соответственно, ω3 и ω4 – угловые скорости тел 3 и 4.
Все катки, включая и катки, обмотанные нитями (как, например, каток 5 на рис. 1), катятся по плоскостям без скольжения.
Вариант 75

Задача Д1
Автомобиль М массой m имея в точке А начальную скорость V0, движется по трассе АВС и мосту СД. Участки АВ и ВС наклонные.
На участке АВ на автомобиль действует постоянная сила трения Fтр, а также постоянная сила F. В точках В и С автомобиль не изменяет величину своей скорости. Мост образует дугу окружности радиуса R. Максимальный прогиб моста h.
Считая автомобиль материальной точкой, определить:
1. Скорости автомобиля в точках В,С трассы и точке К моста
2. Силу давления автомобиля на мост, когда он находится в точке К
3. Установить, находится или нет автомобиль в точке К в отрыве от моста.
Вариант 88

Задача Д1
Груз D массой m=6кг, получив в точке А начальную скорость V0=15м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=12Н). и сила сопротивления среды R, зависящая от скорости v груза, R=0.6·V2 (направлена против движения).
В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила А, проекция которой на ось X: Fx =-5sin(2t).
Считая груз материальной точкой и зная расстояние АВ=l=5м движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.
Вариант 44

Шкив 2 радиуса R, вращаясь с угловым ускорением ɛ2, поднимает однородный цилиндр 1, масса которого m (рис.10). Определить модуль главного вектора внешних сил, действующих на цилиндр 1.
Дано: R=0.2м, ɛ2=10c-2, m=50кг;

Космический корабль массы m при стыковке подходит к орбитальной станции массы M с относительной скоростью u(рис.9,а). На сколько увеличится или уменьшится скорость станции сразу после стыковки?
Дано: m=4000кг, M=12000кг, u=0.4м/c, V0=0.
Задача Д3
Механическая система состоит из грузов 1 и 2 (коэффициент трения грузов о плоскость f =0.1), цилиндрического сплошного однородного катка 3 и ступенчатых шкивов 4 и 5 с радиусами ступеней R4 = 0.3 м, r4 = 0,1 м, R5 = 0,2 м, r5 = 0.1 м (массу каждого шкива считать равномерно распределенной по его внешнему ободу). Тела системы соединены друг с другом нитями, намотанными на шкивы, участки нитей параллельны соответствующим плоскостям.
Под действием силы F = f(s), зависящей от перемещения точки приложения силы, система приходит в движение из состояния покоя. При движении системы на шкивы 4 и 5 действуют постоянные моменты сил сопротивлений, равные соответственно М4 и М5.
Определить значение искомой величины в тот момент времени, когда перемещение точки приложения силы F равно s1.
Вариант 34