Артикул: 1151321

Раздел:Технические дисциплины (96539 шт.) >
  Теоретическая механика (теормех, термех) (1935 шт.) >
  Динамика (365 шт.)

Название или условие:
Практическое задание 6
«Теорема об изменении кинетической энергии механической системы»
Механизм, состоящий из груза А, блока В (больший радиус – R, меньший – r, радиус инерции относительно центральной оси – i) и однородного круглого цилиндра С радиусом RC, установлен на призме, закрепленной на плоскости. Под действием сил тяжести из состояния покоя механизм пришел в движение. Качение цилиндра (блока) происходит без проскальзывания. Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити, соединяющие тела, параллельны плоскостям. Какую скорость развил груз А, переместившись на расстояние SA?
Вариант 14 (Схема 14)
Дано: mA=9кг, mB=3кг, mC=12кг, α=30°, β=45°, RC=18см=0.18м, g≈9.8м/с2, R=36см=0.48м, r=24см=0.24м, i=32см=0.32м, SA=1м.
Определить: VA(SA)-?

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Практическое задание 6 <br /><b>«Теорема об изменении кинетической энергии механической системы»</b><br /> Механизм, состоящий из груза А, блока В (больший радиус – R, меньший –   r, радиус инерции относительно центральной оси – i) и однородного круглого   цилиндра С радиусом RC, установлен на призме, закрепленной на плоскости.   Под действием сил тяжести из состояния покоя механизм пришел в   движение. Качение цилиндра (блока) происходит без проскальзывания.   Трения на неподвижной оси вращающегося блока (цилиндра) нет. Нити,   соединяющие тела, параллельны плоскостям. Какую скорость развил груз А,   переместившись на расстояние S<sub>A</sub>?<br /><b>Вариант 14 (Схема 14)</b> <br /> Дано: m<sub>A</sub>=9кг, m<sub>B</sub>=3кг, m<sub>C</sub>=12кг, α=30°, β=45°, R<sub>C</sub>=18см=0.18м, g≈9.8м/с<sup>2</sup>, R=36см=0.48м, r=24см=0.24м, i=32см=0.32м, S<sub>A</sub>=1м. <br />Определить: V<sub>A</sub>(S<sub>A</sub>)-?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Для заданной механической системы требуется определить кинематическую величину (угловую скорость заданного тела или линейную скорость).
○Дано: F, Mc, m1, m2, m3, R2, R3, α. Звенья 2 и 3 – сплошные однородные цилиндры.
Найти: скорость тела 1 - v1, в зависимости от пройденного пути с помощью теоремы об изменении кинетической энергии.

Найдите угловое ускорение тела (1)
Задача Д1
Динамика материальной точки

Груз D массой m, получив в точке А начальную скорость, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости.
На участке АВ на груз кроме силы тяжести действует постоянная сила Q=10Н, направленная от точки А к точке В, и сила сопротивления среды R , зависящая от скорости V груза D: R=μVn.
В точке В груз, изменив направление приобретенной скорости, но, сохранив при этом ее величину, переходит на участок ВС трубы, где на него, помимо силы тяжести действует сила трения (коэффициент трения груза о трубу f=0,2) и переменная по величине сила F=F(t), направленная вдоль участка ВС. Проекция Fx последней на ось Вх задается.
Считая груз D материальной точкой, и зная расстояние АВ или время t движения груза от точки А до точки В, найти уравнение х=х(t) движения груза на участке ВС.
Вариант 11-5

Найти: V3 с помощью общего уравнения динамики
Задача 3. Применение принципа возможных перемещений к определению реакций опор составной конструкции
Применяя принцип возможных перемещений, определить реакции составной конструкции. Схемы конструкций показаны на рис. Д3.0 – Д3.9, а необходимые для решения данные приведены в табл. Д3. На рисунках все размеры указаны в метрах.
Вариант 13 (Схема 3 Данные 1)

Найдите ускорение тела (1)
Определить:
1. главный вектор сил инерции блока 2;
2. главный момент сил инерции блока 2;
3. натяжение нити между грузом и блоком;
4. массу груза 1;
5. минимальную массу груза 1, при которой система будет находиться в покое.
Вариант 22

Задание Д1. Интегрирование дифференциальных уравнений движения материальной точки, находящейся под действием постоянных сил
Лыжник подходит к точке А участка трамплина АВ, наклоненного под углом α к горизонту и имеющего длину l (рис. 9), со скоростью vA. Коэффициент трения скольжения лыж на участке АВ равен f. Лыжник от А до В движется τ с; в точке В со скоростью vB он покидает трамплин. Через Т с лыжник приземляется со скоростью vC в точке С горы, составляющей угол β с горизонтом. При решении задачи принять лыжника за материальную точку и не учитывать сопротивление воздуха.
Вариант 7
Числовые данные: α = 15°; f = 0,1; vA = 16 м/с; l = 5 м; β = 45°. Определить vВ и Т.

Индивидуальное задание №3
Вариант №28

Механическая система, состоящая из абсолютно твердых тел, под действием сил тяжести приходит в движение из состояния покоя с недеформированной невесомой пружиной; начальное положение системы показано на рисунке 1. Учитывая упругую силу в момент сопротивления качению, определить скорость v1 тела 1 в тот момент, когда пройденный им путь станет равным S1. Другими силами сопротивления пренебречь.

Лыжник массой m = 70 кг опускается без начальной скорости по склону, составляющему угол α = 30° с горизонтом, не отталкиваясь палками. Длина спуска l = 100 м, коэффициент трения скольжения лыж о снег f = 0.1. Сила сопротивления воздуха пропорциональна квадрату скорости R = 0.4v2. Определить скорость лыжника в конце спуска.