Артикул: 1034370

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Динамика (237 шт.)

Название или условие:
Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней R3 = 0,3 м, r3 = 0,1 м и радиусом инерции относительно оси вращения ρ3 = 0,2м, блока 4 радиуса R4 = 0,2 м и катка (или подвижного блока) 5 (рис. Д4.0 – Д4.9, табл. Д4); тело 5 считать сплошным однородным цилиндром, а массу блока 4 – равномерно распределенной по ободу. Коэффициент трения грузов о плоскость f = 0,1. Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными на шкив 3 (или на шкив и каток); участки нитей параллельны соответствующим плоскостям. К одному из тел прикреплена пружина с коэффициентом жесткости с.
Под действием силы F = f(s), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках).
Определить значение искомой величины в тот момент времени, когда перемещение s станет равным s1 = 0,2 м. Искомая величина указана в столбце «Найти» таблицы, где обозначено: υ1, υ2, υС5 – скорости грузов 1, 2 и центра масс тела 5 соответственно, ω3 и ω4 – угловые скорости тел 3 и 4.
Все катки, включая и катки, обмотанные нитями (как, например, каток 5 на рис. 1), катятся по плоскостям без скольжения.
На всех рисунках не изображать груз 2, если m2=0; остальные тела должны изображаться и тогда, когда их масса равна нулю.

Описание:
Указания. Задача Д4 – на применение теоремы об изменении кинетической энергии системы. При решении задачи учесть, что кинетическая энергия Т системы равна сумме кинетических энергий всех входящих в систему тел; эту энергию нужно выразить через ту скорость (линейную или угловую), которую в задаче надо определить. При вычислении Т для установления зависимости между скоростями точек тела, движущегося плоскопараллельно, или между его угловой скоростью и скоростью центра масс воспользоваться мгновенным центром скоростей (кинематика). При вычислении работы надо все перемещения выразить через заданное перемещение s1, учтя, что зависимость между перемещениями здесь будет такой же, как между соответствующими скоростями.

Подробное решение в WORD

Поисковые тэги: Задачник Тарга 1989г.

Изображение предварительного просмотра:

Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней R3 = 0,3 м, r3 = 0,1 м и радиусом инерции относительно оси вращения ρ3 = 0,2м, блока 4 радиуса R4 = 0,2 м и катка (или подвижного блока) 5 (рис. Д4.0 – Д4.9, табл. Д4); тело 5 считать сплошным однородным цилиндром, а массу блока 4 – равномерно распределенной по ободу. Коэффициент трения грузов о плоскость f = 0,1. Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными на шкив 3 (или на шкив и каток); участки нитей параллельны соответствующим плоскостям. К одному из тел прикреплена пружина с коэффициентом жесткости с.  <br />Под действием силы F = f(s), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках). <br />Определить значение искомой величины в тот момент времени, когда перемещение s станет равным s1 = 0,2 м. Искомая величина указана в столбце «Найти» таблицы, где обозначено: υ1, υ2, υС5  –  скорости грузов 1, 2 и центра масс тела 5 соответственно, ω3 и ω4  – угловые скорости тел 3 и 4.  <br />Все катки, включая и катки, обмотанные нитями (как, например, каток 5 на рис. 1), катятся по плоскостям без скольжения.  <br />На всех рисунках не изображать груз 2, если m2=0; остальные тела должны изображаться и тогда, когда их масса равна нулю.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задача Д1
Груз D массой m, получив в точке А начальную скорость V0, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q. и сила сопротивления среды R, зависящая от скорости v груза (направлена против движения).
В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой на ось X задана в таблице.
Считая груз материальной точкой и зная расстояние АВ = l иди время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.
Вариант 34

Граната массы M, летевшая горизонтально со скоростью V0, разорвалась в воздухе на 2 части. Скорость осколка 1 массы m1 возросла в направлении движения до V1. Определить скорость и направление движения второго осколка 2.
Дано: M=12кг, m1=8кг, V0=10м/c, V1=20м/c.
Задача Д1
Груз D массой m=6кг, получив в точке А начальную скорость V0=15м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=12Н). и сила сопротивления среды R, зависящая от скорости v груза, R=0.6·V2 (направлена против движения).
В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила А, проекция которой на ось X: Fx =-5sin(2t).
Считая груз материальной точкой и зная расстояние АВ=l=5м движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.
Вариант 44

Задача Д1
Груз D массой m, получив в точке А начальную скорость υ0, движется в изогнутой трубе ABC, расположенной в вертикальной плоскости; участки трубы или оба наклонные, или один горизонтальный, а другой наклонный (рис. Д1.0 – Д1.9, табл. Д1). На участке АВ, на груз кроме силы тяжести, действуют постоянная сила Q (ее направление показано на рисунках) и сила сопротивления среды R, зависящая от скорости v груза (направлена против движения); трением груза о трубу на участке АВ пренебречь.
В точке В груз, не изменяя своей скорости, переходит на участок ВС трубы, где на него, кроме силы тяжести, действуют сила трения (коэффициент трения груза о трубу f = 0,2) и переменная сила F, проекция которой Fx на ось х задана в таблице. Считая груз материальной точкой и зная расстояние АВ = l или время t1 движения груза от точки А до точки В, найти закон движения груза на участке ВС, т. е. x = f(t), где x = BD
Вариант 75

На тело 1 действует постоянная сила F. Определить ускорение этого тела в момент времени t, если относительно него под действием внутренних сил системы движется тело 2 согласно уравнению x=x(t). Тела движутся поступательно.
Дано: m1=4кг, m2=1кг, t=0.5c, F=10H, x=sin(π*t).
Шкив 2 радиуса R, вращаясь с угловым ускорением ɛ2, поднимает однородный цилиндр 1, масса которого m (рис.10). Определить модуль главного вектора внешних сил, действующих на цилиндр 1.
Дано: R=0.2м, ɛ2=10c-2, m=50кг;

Задача Д1
Автомобиль М массой m имея в точке А начальную скорость V0, движется по трассе АВС и мосту СД. Участки АВ и ВС наклонные.
На участке АВ на автомобиль действует постоянная сила трения Fтр, а также постоянная сила F. В точках В и С автомобиль не изменяет величину своей скорости. Мост образует дугу окружности радиуса R. Максимальный прогиб моста h.
Считая автомобиль материальной точкой, определить:
1. Скорости автомобиля в точках В,С трассы и точке К моста
2. Силу давления автомобиля на мост, когда он находится в точке К
3. Установить, находится или нет автомобиль в точке К в отрыве от моста.
Вариант 99

По горизонтальному участку пути движутся в одном направлении два вагона, массы которых m1, m2 и скорости V1, V2. Второй вагон догоняет первый и сцепляется с ним. Пренебрегая сопротивлением движению, определить скорость V3 вагонов после сцепления.
Дано: m1=30000кг, m2=20000кг, V1=1м/c, V2=2м/c.
Задание Д-2
Тело H массой m1 вращается вокруг вертикальной оси z с постоянной угловой скоростью ω0; при этом в точке К желоба АВ тела Н на расстоянии АК от точки А, отсчитываемом вдоль желоба, находится материальная точка М массой m2. В некоторый момент времени (t=0) на систему начинает действовать пара сил с моментом Mz=Mz(t). При t=τ действие сил прекращается и начинается второй этап движения, в течение которого точка М начинает относительное движение из точки К вдоль желоба АВ (в направлении точке В) по закону МК=s(t1), где t1 –время движения на втором этапе. Определить угловую скорость ωт тела Н при t1=T. Тело Н рассматривать как однородную пластину форма которой показана на рис Д-2 либо как однородный стержень.
Дано: m1=80 кг; m2=20 кг; ω0=0; R=2 м; a=1,2 м; s=s(t)=(πa/4)∙t1; T=3с; M=240√t; AK=πa/4; τ=4с.

Задача Д1
Груз D массой m=3кг, получив в точке А начальную скорость V0=22м/с, движется в изогнутой трубе АВС, расположенной в вертикальной плоскости. На участке АВ на груз кроме силы тяжести P действует постоянная сила Q (Q=9Н). и сила сопротивления среды R, зависящая от скорости v груза, R=0.5·V (направлена против движения).
В точке В груз, не меняя своей скорости, переходит на участок ВС трубы, где на него кроме силы тяжести действует переменная сила F, проекция которой на ось X: Fx =4sin(2t).
Считая груз материальной точкой и зная расстояние время t1 = 3с движения груза от точки А до точки В, найти закон движения груза на участке ВС, т.е. X=f(t), где X=ВD. Трением груза о трубу пренебречь.
Вариант 99