Артикул: 1027761

Раздел:Технические дисциплины (57837 шт.) >
  Теоретическая механика (теормех, термех) (1461 шт.) >
  Кинематика (483 шт.) >
  Уравнение движения точки (196 шт.)

Название или условие:
Пусть точка М движется в плоскости xOy в соответствии с уравнениями . Для момента времени t1= 0,5 с найти положение точки М на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Описание:
Подробное решение в WORD

Изображение предварительного просмотра:

Пусть точка М движется в плоскости xOy в соответствии с уравнениями  . Для момента времени  t<sub>1</sub>= 0,5 с найти положение точки М на траектории, ее скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Задание К1
3.1.1. Условия задачи. Материальная точка А движется в плоскости хОy. Движение точки задано уравнениями, где координаты х и y выражены в сантиметрах, а время t – в секундах.
Конкретный вид функций f1(t) и f2(t), в зависимости от номера варианта (шифра), определяется по данным, приведенным в табл. К1.
Определить уравнение траектории точки, а также законы изменения проекций скорости vx, vy и ускорения ах, аy на оси координат как функции времени.
Вычислить для момента времени t = 1 с координаты точки, скорость и ускорение точки и их проекции на оси координат, касательную aτ и нормальную an составляющие полного ускорения, а также длину радиуса кривизны ρ траектории.
Показать на схеме в выбранном масштабе траекторию точки (можно чертить только часть траектории в окрестностях точки А в момент времени t = 1 c), векторы V, a и их составляющих Vx, Vy , ax, ay, aτ, an, а также центр С кривизны траектории (при малой кривизне траектории, когда центр С находится за пределами схемы, достаточно показать направление к центру кривизны)
Вариант 789

Задача К–1. Вариант 14.
Определение скорости и ускорения точки, если закон движения точки задан естественным способом
Дано: точка движется по дуге окружности. R = 2 м, S = 6t2+4 м
Найти: скорость и ускорение точки при t = 1 c .
К1.
По данным уравнениям движения точки М установить вид её траектории и для момента величины t_0, t_1, найти положение точки на траектории, для момента времени t_1, найти её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны в данной точке.
Вариант 1

Задача 2. Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории.
Вариант 10

Задача 3. Точка движется по закону x=x(t), y=y(t). Для момента времени t=t1 найти скорость, ускорение точки и радиус кривизны траектории.
Вариант 8

Задача К1
Точка В движется в плоскости x0y. Закон движения точки задан уравнениями: x = f1(t), y = f2(t), где x и y выражены в сантиметрах, t – в секундах.
Зависимость x = f1(t) указана непосредственно на рисунках, а зависимость y = f2(t) дана в табл. К1.
Найти уравнение траектории точки; для момента времени t1 = 1с определить положение, скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точки траектории.
Вариант 34

Определить траекторию точки и ее скорость по заданным уравнениям движения.
Практическая работа №3
Уравнения траектории движения материальной точки.

Найти уравнение траектории точки, а также для момента времени t = t1 (c) определить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории в соответствующей точке.
Вариант 10
x(t)=-0.2t2+1,см;
y(t)=t2+3t,см;
t1=1.2 c;

Практическая работа №3
Уравнения траектории движения материальной точки.

Найти уравнение траектории точки, а также для момента времени t = t1 (c) определить положение точки на траектории, её скорость, полное, касательное и нормальное ускорения, а также радиус кривизны траектории в соответствующей точке.
Вариант 11
x(t)=0.5t2+1.5,см;
y(t)=2t2-5,см;
t1=2.2 c;

Задание 1.1
По заданным уравнениям x=x(t), y=y(t) движения точки сделать анализ этого движения:
1. Найти уравнение траектории точки в координатной форме и построить её.
2. Указать положение точки при t=0 и в заданный момент времени t=t1;
3. Найти и построить скорость, тангенциальное, нормальное и полное ускорение точки при t=t1, а также найти радиус кривизны её траектории
Вариант 25