Артикул: 1003297

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Аналитическая геометрия (1481 шт.)

Название или условие:
Задача 75 из учебника Минорского
Построить прямые, заданные параметрами: 1) b = -2, φ = 60° и 2) 1) b = -2, φ = 120° и написать их уравнения

Поисковые тэги: Сборник Минорского

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Даны векторы a(2;0;1),b(-1;1;0),c(0;1;-3) . Вычислить направляющие косинусы вектора a + 2b Даны координаты вершин пирамиды A1A2A3A4. Средствами векторной алгебры найти:
1) угол между ребрами A1A2 и A1A4;
2) площадь грани A1A2A3;
3) проекцию вектора A1A3 на вектор A1A4;
4) объем пирамиды;
Вариант 7

Даны координаты точек А, В, С: А(1; 1; 3), B (–4; 0; 3), C (–1; 5; 7).
Требуется:
1) записать векторы AB и AC в системе орт и найти модули этих векторов;
2) найти угол между векторами AB и AC;
3) составить уравнение плоскости, проходящее через точку С перпендикулярно вектору AB.
2. Составить уравнение геометрического места точек, каждая из которых находится вдвое дальше от точки A(3;0), чем от оси ординат.
Даны три вектора a(1;-1;1),b(5;1;1),c(0;3;-2) . Вычислить b(a;c) -c(a;b) .Даны вершины треугольника АВС A(-8; -4), B(4;5), C(2;-9) .
Найти:
1) длину стороны АВ;
2) уравнения сторон АВ и АС и их угловые коэффициенты;
3) внутренний угол А в радианах с точностью до 0,01;
4) уравнение высоты CD и ее длину;
5) уравнение окружности, для которой высота CD есть диаметр;
6) систему линейных неравенств, определяющих треугольник ΔABC.
Вычислить:
Показать, что четырехугольник ABCD – ромб, если A(1;2;2), B(3;5;8), C(-3;2;6), D(-5;-1;0). Найти угол при вершине ромба.
Даны координаты вершин пирамиды ABCD. A(8;4;8), B(0;5;2), C(7;1;3); D(4;6;0)
Найти скалярное и векторное произведение векторов a = (4;7;3), b = (0;1;1)