Артикул: 1002389

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Дискретная математика (330 шт.) >
  Комбинаторика (115 шт.)

Название или условие:
Сколькими способами 4 человека могут разместиться на четырёхместной скамейке?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

На клетчатой бумаге отмечены произвольные n клеток. Доказать, что из них всегда можно выбрать не менее чем n/4 клеток, попарно не соприкасающихся друг с другом (соприкасающимися считаются клетки, имеющие хотя бы одну общую вершину). Задача 1.1
Сколькими способами можно выбрать путь из начала координат О(0,0) в точку В(n1, n2), если каждый шаг равен 1, но его можно совершать только вправо или вверх? Сколько таких путей проходит через точку А(k1, k2)?

Решите следующую комбинаторную задачу. На диск кодового замка нанесено 12 букв. «Секретное слово» состоит из пяти букв. Сколько неудачных попыток может сделать человек, не знающий «секретного слова»?У Пети есть 7 монет по 1 рублю и 3 монеты по 2 рубля. Петя случайным образом выбирает 1 монету номиналом 1 рубль и 1 монету номиналом 2 рубля. Сколькими способами он может это сделать?
Каждый из 17 ученых переписывается с остальными. В их переписке речь идет лишь о трех темах. Каждая пара ученых переписывается друг с другом лишь по одной теме. Докажите, что не менее трех ученых переписываются друг с другом по одной и той же теме. Маше нужно выбрать из 8 книг 2 книги. Сколькими способами она может это сделать?
Среди 100 фотографий есть одна разыскиваемого преступника. Наудачу выбирают 10 фотографий. Какое количество сочетаний по 10 фотографий, содержащих фотографию разыскиваемого преступника, существует?Четыре студента сдают экзамен. Сколькими способами им могут быть выставлены положительные оценки?
На плоскости дано множество M, состоящее из n точек, никакие три из которых не лежат на одной прямой. Каждому отрезку с концами из М поставлено в соответствие либо число +1, либо число - 1, причем число отрезков, которым соответствует число - 1, равно m. Треугольник с вершинами из М назовем отрицательным, если произведение трех чисел, соответствующих его сторонам, равно - 1. Доказать, что число отрицательных треугольников имеет ту же четность, что и произведение nm. В урне имеется 5 белых шаров, 3 красных и 2 чёрных. Наугад по одному вынимается 3 шара, причём после выемки каждого шара исходное количество шаров восстанавливается. Сколько существует вариантов раскраски этих троек?