Артикул: 1140682

Раздел:Технические дисциплины (86805 шт.) >
  Математика (32435 шт.) >
  Дискретная математика (650 шт.) >
  Комбинаторика (356 шт.)

Название или условие:
Каждый из 17 ученых переписывается с остальными. В их переписке речь идет лишь о трех темах. Каждая пара ученых переписывается друг с другом лишь по одной теме. Докажите, что не менее трех ученых переписываются друг с другом по одной и той же теме.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Среди 100 фотографий есть одна разыскиваемого преступника. Наудачу выбирают 10 фотографий. Какое количество сочетаний по 10 фотографий, содержащих фотографию разыскиваемого преступника, существует?Сколькими способами можно выбрать две книги из трех и расположить их в ряд на полке
Какое количество различных символов (букв, цифр и т. п.) можно передать не более чем пятью знаками кода (Морзе), использующего точку (·) и тире (-)?Сколько экзаменационных билетов можно составить из 50 вопросов, включая в билет по 2 вопроса?
Решите следующую комбинаторную задачу. На диск кодового замка нанесено 12 букв. «Секретное слово» состоит из пяти букв. Сколько неудачных попыток может сделать человек, не знающий «секретного слова»?Сколько пятизначных чисел можно образовать с помощью цифр 1, 2, 3, 4, 5, если любая из них в числе встречается лишь один раз?
Четыре студента сдают экзамен. Сколькими способами им могут быть выставлены положительные оценки? Маше нужно выбрать из 8 книг 2 книги. Сколькими способами она может это сделать?
Вычислить C2nНа тренировках занимаются 12 баскетболистов. Сколько может быть образовано тренером разных стартовых пятерок?