Артикул: 1135284

Раздел:Технические дисциплины (82824 шт.) >
  Математика (31285 шт.) >
  Дискретная математика (625 шт.) >
  Комбинаторика (333 шт.)

Название или условие:
В почтовом отделении продаются открытки 8 типов. Сколькими способами а) можно купить 6 разных открыток? б) можно купить 6 открыток?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок мозно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия поулченного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

Сколько пятизначных чисел можно образовать с помощью цифр 1, 2, 3, 4, 5, если любая из них в числе встречается лишь один раз?На тренировках занимаются 12 баскетболистов. Сколько может быть образовано тренером разных стартовых пятерок?
Маше нужно выбрать из 8 книг 2 книги. Сколькими способами она может это сделать?Сколькими способами можно на полке расставить 4 книги?
В игре «Десант» две армии захватывают страну. Они ходят по очереди, каждым ходом занимая один из свободных городов. Первый свой город армия захватывает с воздуха, а каждым следующим ходом она может захватить любой город, соединённый дорогой с каким-нибудь уже занятым этой армией городом. Если таких городов нет, армия прекращает свои боевые действия (при этом, возможно, другая армия свои действия продолжает). Найдётся ли такая схема городов и дорог, что армия, ходящая второй, сможет захватить более половины всех городов, как бы ни действовала первая армия? (Число городов конечно, каждая дорога соединяет ровно два города.) Среди 100 фотографий есть одна разыскиваемого преступника. Наудачу выбирают 10 фотографий. Какое количество сочетаний по 10 фотографий, содержащих фотографию разыскиваемого преступника, существует?
Вычислить C2nСуществует ли конечное слово из букв русского алфавита, в котором нет двух соседних одинаковых подслов, но таковые появляются при приписывании (как справа, так и слева) любой буквы русского алфавита. Комментарий. Словом мы называем любую последовательность букв русского алфавита, не обязательно осмысленную, подсловом называется любой фрагмент слова. Например, АБВШГАБ - слово, а АБВ, Ш, ШГАБ - его подслова.
«Дельфин» - фигура, которая ходит на одно поле вверх, вправо или по диагонали налево вниз, как показано на рис. Может ли «дельфин», начиная из левого нижнего угла доски размером 8×8, обойти всю эту доску, побывав в каждой клетке ровно по одному разу?
Задача 1.1
Сколькими способами можно выбрать путь из начала координат О(0,0) в точку В(n1, n2), если каждый шаг равен 1, но его можно совершать только вправо или вверх? Сколько таких путей проходит через точку А(k1, k2)?