Артикул: 1137567

Раздел:Технические дисциплины (84639 шт.) >
  Математика (32245 шт.) >
  Дискретная математика (638 шт.) >
  Комбинаторика (346 шт.)

Название или условие:
На тренировках занимаются 12 баскетболистов. Сколько может быть образовано тренером разных стартовых пятерок?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

На плоскости дано множество M, состоящее из n точек, никакие три из которых не лежат на одной прямой. Каждому отрезку с концами из М поставлено в соответствие либо число +1, либо число - 1, причем число отрезков, которым соответствует число - 1, равно m. Треугольник с вершинами из М назовем отрицательным, если произведение трех чисел, соответствующих его сторонам, равно - 1. Доказать, что число отрицательных треугольников имеет ту же четность, что и произведение nm. Мышка грызет куб сыра с ребром 3, разбитый на 27 единичных кубиков. Когда мышка съедает какой-либо кубик, она переходит к другому кубику, имеющему общую грань с предыдущим. Может ли мышка съесть весь куб, кроме центрального кубика?
Четыре студента сдают экзамен. Сколькими способами им могут быть выставлены положительные оценки? В почтовом отделении продаются открытки 8 типов. Сколькими способами а) можно купить 6 разных открыток? б) можно купить 6 открыток?
В урне имеется 5 белых шаров, 3 красных и 2 чёрных. Наугад по одному вынимается 3 шара, причём после выемки каждого шара исходное количество шаров восстанавливается. Сколько существует вариантов раскраски этих троек? Среди 100 фотографий есть одна разыскиваемого преступника. Наудачу выбирают 10 фотографий. Какое количество сочетаний по 10 фотографий, содержащих фотографию разыскиваемого преступника, существует?
«Дельфин» - фигура, которая ходит на одно поле вверх, вправо или по диагонали налево вниз, как показано на рис. Может ли «дельфин», начиная из левого нижнего угла доски размером 8×8, обойти всю эту доску, побывав в каждой клетке ровно по одному разу?
Вычислить C2n
Сколькими способами можно выбрать две книги из трех и расположить их в ряд на полкеУ Пети есть 7 монет по 1 рублю и 3 монеты по 2 рубля. Петя случайным образом выбирает 1 монету номиналом 1 рубль и 1 монету номиналом 2 рубля. Сколькими способами он может это сделать?