Среди 100 фотографий есть одна разыскиваемого преступника. Наудачу выбирают 10 фотографий. Какое количество сочетаний по 10 фотографий, содержащих фотографию разыскиваемого преступника, существует? | Решите следующую комбинаторную задачу. На диск кодового замка нанесено 12 букв. «Секретное слово» состоит из пяти букв. Сколько неудачных попыток может сделать человек, не знающий «секретного слова»? |
Маше нужно выбрать из 8 книг 2 книги. Сколькими способами она может это сделать? | Сколькими способами можно на полке расставить 4 книги? |
Сколькими способами можно выбрать две книги из трех и расположить их в ряд на полке | На плоскости дано множество M, состоящее из n точек, никакие три из которых не лежат на одной прямой. Каждому отрезку с концами из М поставлено в соответствие либо число +1, либо число - 1, причем число отрезков, которым соответствует число - 1, равно m. Треугольник с вершинами из М назовем отрицательным, если произведение трех чисел, соответствующих его сторонам, равно - 1. Доказать, что число отрицательных треугольников имеет ту же четность, что и произведение nm. |
Сколько экзаменационных билетов можно составить из 50 вопросов, включая в билет по 2 вопроса? | Студенту необходимо сдать четыре экзамена в течение семи дней. Сколькими способами можно составив расписание экзаменов, если учитывать, что в один день он может сдавать только один экзамен? |
Каждый из 17 ученых переписывается с остальными. В их переписке речь идет лишь о трех темах. Каждая пара ученых переписывается друг с другом лишь по одной теме. Докажите, что не менее трех ученых переписываются друг с другом по одной и той же теме. | Задача 1.1 Сколькими способами можно выбрать путь из начала координат О(0,0) в точку В(n1, n2), если каждый шаг равен 1, но его можно совершать только вправо или вверх? Сколько таких путей проходит через точку А(k1, k2)?
 |