Артикул: 1140677

Раздел:Технические дисциплины (86808 шт.) >
  Математика (32435 шт.) >
  Дискретная математика (650 шт.) >
  Комбинаторика (356 шт.)

Название или условие:
На клетчатой бумаге отмечены произвольные n клеток. Доказать, что из них всегда можно выбрать не менее чем n/4 клеток, попарно не соприкасающихся друг с другом (соприкасающимися считаются клетки, имеющие хотя бы одну общую вершину).

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.
Условия доставки:
Получение файла осуществляется самостоятельно по ссылке, которая генерируется после оплаты. В случае технических сбоев или ошибок можно обратиться к администраторам в чате или на электронную почту и файл будет вам отправлен.
Условия отказа от заказа:
Отказаться возможно в случае несоответсвия полученного файла его описанию на странице заказа.
Возврат денежных средств осуществляется администраторами сайта по заявке в чате или на электронной почте в течении суток.

Похожие задания:

«Дельфин» - фигура, которая ходит на одно поле вверх, вправо или по диагонали налево вниз, как показано на рис. Может ли «дельфин», начиная из левого нижнего угла доски размером 8×8, обойти всю эту доску, побывав в каждой клетке ровно по одному разу?
Какое количество различных символов (букв, цифр и т. п.) можно передать не более чем пятью знаками кода (Морзе), использующего точку (·) и тире (-)?
Студенту необходимо сдать четыре экзамена в течение семи дней. Сколькими способами можно составив расписание экзаменов, если учитывать, что в один день он может сдавать только один экзамен? Мышка грызет куб сыра с ребром 3, разбитый на 27 единичных кубиков. Когда мышка съедает какой-либо кубик, она переходит к другому кубику, имеющему общую грань с предыдущим. Может ли мышка съесть весь куб, кроме центрального кубика?
В почтовом отделении продаются открытки 8 типов. Сколькими способами а) можно купить 6 разных открыток? б) можно купить 6 открыток? На плоскости дано множество M, состоящее из n точек, никакие три из которых не лежат на одной прямой. Каждому отрезку с концами из М поставлено в соответствие либо число +1, либо число - 1, причем число отрезков, которым соответствует число - 1, равно m. Треугольник с вершинами из М назовем отрицательным, если произведение трех чисел, соответствующих его сторонам, равно - 1. Доказать, что число отрицательных треугольников имеет ту же четность, что и произведение nm.
Из 15 школьников нужно отправить 2 учеников на дежурство. Сколькими способами можно это сделать?Сколько экзаменационных билетов можно составить из 50 вопросов, включая в билет по 2 вопроса?
Маше нужно выбрать из 8 книг 2 книги. Сколькими способами она может это сделать?На тренировках занимаются 12 баскетболистов. Сколько может быть образовано тренером разных стартовых пятерок?